Abstract
In this survey paper we discuss a series of recent results concerning nonnegative solutions to nonlinear diffusion equations of porous-medium type on Cartan–Hadamard manifolds, a special class of negatively-curved Riemannian manifolds that generalize the Euclidean space. We focus on sharp barrier estimates, asymptotic convergence and smoothing effects, describing quantitatively how the curvature behavior at infinity affects the way solutions depart from having a Euclidean-like structure.
This is a preview of subscription content, access via your institution.
References
- 1.
Bénilan, P., Crandall, M.G.: The continuous dependence on \(\varphi \) of solutions of \(u_t - \Delta \varphi (u) = 0\). Indiana Univ. Math. J. 30, 161–177 (1981)
- 2.
Bonforte, M., Grillo, G.: Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225, 33–62 (2005)
- 3.
Bonforte, M., Grillo, G., Vázquez, J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8, 99–128 (2008)
- 4.
Brezis, H., Kamin, S.: Sublinear elliptic equations in \({\mathbb{R}}^n\). Manuscr. Math. 74, 87–106 (1992)
- 5.
Ghomi, M., Spruck, J.: Total curvature and the isoperimetric inequality in Cartan–Hadamard manifolds. arXiv:1908.09814(preprint)
- 6.
Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)
- 7.
Grillo, G., Muratori, M.: Sharp short and long time \(L^\infty \) bounds for solutions to porous media equations with homogeneous Neumann boundary conditions. J. Differ. Equ. 254, 2261–2288 (2013)
- 8.
Grillo, G., Muratori, M.: Smoothing effects for the porous medium equation on Cartan–Hadamard manifolds. Nonlinear Anal. 131, 346–362 (2016)
- 9.
Grillo, G., Muratori, M., Porzio, M.M.: Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete Contin. Dyn. Syst. 33, 3599–3640 (2013)
- 10.
Grillo, G., Muratori, M., Punzo, F.: On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete Contin. Dyn. Syst. 35, 5927–5962 (2015)
- 11.
Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with measure data on negatively curved Riemannian manifolds. J. Eur. Math. Soc. (JEMS) 20, 2769–2812 (2018)
- 12.
Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. Adv. Math. 314, 328–377 (2017)
- 13.
Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature: the superquadratic case. Math. Ann. 373, 119–153 (2019)
- 14.
Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1999)
- 15.
Kamin, S., Reyes, G., Vázquez, J.L.: Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete Contin. Dyn. Syst. 26, 521–549 (2010)
- 16.
Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)
- 17.
Lee, J.M.: Riemannian Manifolds. An Introduction to Curvature. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997)
- 18.
McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)
- 19.
Muratori, M., Roncoroni, A.: Sobolev-type inequalities on Cartan-Hadamard manifolds and applications to some nonlinear diffusion equations. arXiv:1805.02726(preprint arXiv)
- 20.
Nieto, S., Reyes, G.: Asymptotic behavior of the solutions of the inhomogeneous porous medium equation with critical vanishing density. Commun. Pure Appl. Anal. 12, 1123–1139 (2013)
- 21.
Reyes, G., Vázquez, J.L.: Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Commun. Pure Appl. Anal. 8, 493–508 (2009)
- 22.
Vázquez, J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior. Monatsh. Math. 142, 81–111 (2004)
- 23.
Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford University Press, Oxford (2006)
- 24.
Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. The Clarendon Press, Oxford University Press, Oxford (2007)
- 25.
Vázquez, J.L.: Fundamental solution and long time behavior of the porous medium equation in hyperbolic space. J. Math. Pures Appl. 104, 454–484 (2015)
- 26.
Vázquez, J.L.: Asymptotic behaviour for the heat equation in hyperbolic space. arXiv:1811.09034(preprint arXiv)
- 27.
Wang, F.-Y.: Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures. Sci. China Math. 53, 895–904 (2010)
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest.
The author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Muratori, M. Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects. Boll Unione Mat Ital 14, 69–97 (2021). https://doi.org/10.1007/s40574-020-00238-5
Received:
Accepted:
Published:
Issue Date: