Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects

Abstract

In this survey paper we discuss a series of recent results concerning nonnegative solutions to nonlinear diffusion equations of porous-medium type on Cartan–Hadamard manifolds, a special class of negatively-curved Riemannian manifolds that generalize the Euclidean space. We focus on sharp barrier estimates, asymptotic convergence and smoothing effects, describing quantitatively how the curvature behavior at infinity affects the way solutions depart from having a Euclidean-like structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bénilan, P., Crandall, M.G.: The continuous dependence on \(\varphi \) of solutions of \(u_t - \Delta \varphi (u) = 0\). Indiana Univ. Math. J. 30, 161–177 (1981)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bonforte, M., Grillo, G.: Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225, 33–62 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bonforte, M., Grillo, G., Vázquez, J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8, 99–128 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brezis, H., Kamin, S.: Sublinear elliptic equations in \({\mathbb{R}}^n\). Manuscr. Math. 74, 87–106 (1992)

    Article  Google Scholar 

  5. 5.

    Ghomi, M., Spruck, J.: Total curvature and the isoperimetric inequality in Cartan–Hadamard manifolds. arXiv:1908.09814(preprint)

  6. 6.

    Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Grillo, G., Muratori, M.: Sharp short and long time \(L^\infty \) bounds for solutions to porous media equations with homogeneous Neumann boundary conditions. J. Differ. Equ. 254, 2261–2288 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Grillo, G., Muratori, M.: Smoothing effects for the porous medium equation on Cartan–Hadamard manifolds. Nonlinear Anal. 131, 346–362 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Grillo, G., Muratori, M., Porzio, M.M.: Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete Contin. Dyn. Syst. 33, 3599–3640 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Grillo, G., Muratori, M., Punzo, F.: On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete Contin. Dyn. Syst. 35, 5927–5962 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with measure data on negatively curved Riemannian manifolds. J. Eur. Math. Soc. (JEMS) 20, 2769–2812 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. Adv. Math. 314, 328–377 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature: the superquadratic case. Math. Ann. 373, 119–153 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1999)

  15. 15.

    Kamin, S., Reyes, G., Vázquez, J.L.: Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete Contin. Dyn. Syst. 26, 521–549 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Google Scholar 

  17. 17.

    Lee, J.M.: Riemannian Manifolds. An Introduction to Curvature. Graduate Texts in Mathematics, vol. 176. Springer, New York (1997)

  18. 18.

    McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Muratori, M., Roncoroni, A.: Sobolev-type inequalities on Cartan-Hadamard manifolds and applications to some nonlinear diffusion equations. arXiv:1805.02726(preprint arXiv)

  20. 20.

    Nieto, S., Reyes, G.: Asymptotic behavior of the solutions of the inhomogeneous porous medium equation with critical vanishing density. Commun. Pure Appl. Anal. 12, 1123–1139 (2013)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Reyes, G., Vázquez, J.L.: Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Commun. Pure Appl. Anal. 8, 493–508 (2009)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Vázquez, J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior. Monatsh. Math. 142, 81–111 (2004)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford University Press, Oxford (2006)

    Google Scholar 

  24. 24.

    Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. The Clarendon Press, Oxford University Press, Oxford (2007)

    Google Scholar 

  25. 25.

    Vázquez, J.L.: Fundamental solution and long time behavior of the porous medium equation in hyperbolic space. J. Math. Pures Appl. 104, 454–484 (2015)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Vázquez, J.L.: Asymptotic behaviour for the heat equation in hyperbolic space. arXiv:1811.09034(preprint arXiv)

  27. 27.

    Wang, F.-Y.: Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures. Sci. China Math. 53, 895–904 (2010)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Muratori.

Ethics declarations

Conflict of interest.

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muratori, M. Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects. Boll Unione Mat Ital 14, 69–97 (2021). https://doi.org/10.1007/s40574-020-00238-5

Download citation