Bollettino dell'Unione Matematica Italiana

, Volume 11, Issue 2, pp 283–292 | Cite as

Normal measures and strongly compact cardinals

  • Arthur W. Apter


We prove four theorems concerning the number of normal measures a non-\((\kappa + 2)\)-strong strongly compact cardinal \(\kappa \) can carry.


Supercompact cardinal Strongly compact cardinal \((\kappa + 2)\)-strong cardinal \(\kappa \) Indestructibility Magidor iteration of Prikry forcing 

Mathematics Subject Classification

03E35 03E55 


  1. 1.
    Apter, A.: Laver indestructibility and the class of compact cardinals. J. Symb. Logic 63, 149–157 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Apter, A.: Some remarks on normal measures and measurable cardinals. Math. Logic Q. 47, 35–44 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Apter, A., Cummings, J.: Identity crises and strong compactness II: strong cardinals. Arch. Math. Logic 40, 25–38 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cummings, J.: Possible behaviours for the Mitchell ordering. Ann. Pure Appl. Logic 65, 107–123 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hamkins, J.D.: Gap forcing. Isr. J. Math. 125, 237–252 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hamkins, J.D.: Gap forcing: generalizing the Lévy–Solovay theorem. Bull. Symbol. Logic 5, 264–272 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jech, T.: Set Theory: The Third Millennium Edition, Revised and Expanded. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Kanamori, A.: The Higher Infinite: Large Cardinals in Set Theory from their Beginnings. Springer, Berlin (1994, 2003, and 2009)Google Scholar
  9. 9.
    Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \)-directed closed forcing. Isr. J. Math. 29, 385–388 (1978)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lévy, A., Solovay, R.: Measurable cardinals and the continuum hypothesis. Isr. J. Math. 5, 234–248 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Magidor, M.: How large is the first strongly compact cardinal? or a study on identity crises. Ann. Math. Logic 10, 33–57 (1976)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Menas, T.: Consistency results concerning supercompactness. Trans. Am. Math. Soc. 223, 61–91 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Menas, T.: On strong compactness and supercompactness. Ann. Math. Logic 7, 327–359 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Solovay, R.: Strongly compact cardinals and the GCH. In: Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, vol. 25, pp. 365–372. American Mathematical Society, Providence (1974)Google Scholar

Copyright information

© Unione Matematica Italiana 2017

Authors and Affiliations

  1. 1.Department of MathematicsBaruch College of CUNYNew YorkUSA
  2. 2.The CUNY Graduate Center, MathematicsNew YorkUSA

Personalised recommendations