Skip to main content
Log in

Affine lines in the complement of a smooth plane conic

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We classify closed curves isomorphic to the affine line in the complement of a smooth rational projective plane conic Q. Over a field of characteristic zero, we show that up to the action of the subgroup of the Cremona group of the plane consisting of birational endomorphisms restricting to biregular automorphisms outside Q, there are exactly two such lines: the restriction of a smooth conic osculating Q at a rational point and the restriction of the tangent line to Q at a rational point. In contrast, we give examples illustrating the fact that over fields of positive characteristic, there exist exotic closed embeddings of the affine line in the complement of Q. We also determine an explicit set of birational endomorphisms of the plane whose restrictions generates the automorphism group of the complement of Q over a field of arbitrary characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abhyankar, S., Moh, T.: Embedding of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Blanc, J., Dubouloz, A.: Automorphisms of \(\mathbb{A}^1\)-fibered surfaces. Trans. Am. Math. Soc. 363, 5887–5924 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Danilov, V.I., Gizatullin, M.H.: Automorphisms of affine surfaces. I. Izv. Akad. Nauk SSSR Ser. Mat. 39(3), 523–565 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Dubouloz, A.: Completions of normal affine surfaces with a trivial Makar–Limanov invariant. Mich. Math. J. 52(2), 289–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubouloz, A.: Embeddings of Danielewski surfaces in affine spaces. Comment. Math. Helv. 81(1), 49–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubouloz, A., Lamy, S.: Automorphisms of open surfaces with irreducible boundary. Osaka J. Math. 52(3), 747–793 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Fujita, T.: On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 503–566 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Goodman, J.E.: Affine open subset of algebraic varieties and ample divisors. Ann. Math. 89, 160–183 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gurjar, R.V., Masuda, K., Miyanishi, M., Russell, P.: Affine lines on affine surfaces and the Makar–Limanov invariant. Can. J. Math. 60(1), 109–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iitaka, S.: On Logarithmic Kodaira Dimension of Algebraic Varieties. Complex analysis and algebraic geometry, pp. 175–189. Iwanami Shoten, Tokyo (1977)

    MATH  Google Scholar 

  11. Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MathSciNet  MATH  Google Scholar 

  12. Miyanishi, M.: Open algebraic surfaces. CRM Monogr. Ser. 12 Am. Math. Soc. Providence, RI (2001)

  13. Palka, K.: Classification of singular Q-homology planes II. \({\mathbb{C}}^1-\) and \({\mathbb{C}}^*\)-rulings. Pac J. M. 282-2, 421–457 (2012)

  14. Palka, K.: A new proof of the theorems of Lin-Zaidenberg and Abhyankar-Moh-Suzuki. J. Algebra Appl. 14(9), 1540012 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. van der Kulk, W.: On polynomial rings in two variables. Nieuw Arch. Wisk. 1, 33–41 (1953)

    MathSciNet  MATH  Google Scholar 

  16. Zaidenberg, M.: Affine lines on \(\mathbb{Q}\)-homology planes and group actions. Transform. Gr. 11(4), 725–735 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Some of the questions addressed in this article emerged during the workshop “Birational geometry of surfaces”, held at the Department of Mathematics of the University of Roma Tor Vergata in January 2016. The authors would like to thank the organizers of the workshop for the motivated but relaxed atmosphere of this workshop, as well as the other members of the “Afternoon Cremona Club”, Ciro Ciliberto, Alberto Calabri and Anne Lonjou, for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Dubouloz.

Additional information

This research was partialy funded by ANR Grant “BirPol” ANR-11-JS01-004-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decaup, J., Dubouloz, A. Affine lines in the complement of a smooth plane conic. Boll Unione Mat Ital 11, 39–54 (2018). https://doi.org/10.1007/s40574-017-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-017-0119-z

Keywords

Mathematics Subject Classification

Navigation