Advertisement

Bollettino dell'Unione Matematica Italiana

, Volume 11, Issue 1, pp 13–25 | Cite as

Irrationality issues for projective surfaces

  • Francesco Bastianelli
Article

Abstract

This survey retraces the author’s talk at the Workshop Birational geometry of surfaces, Rome, January 11–15, 2016. We consider various birational invariants extending the notion of gonality to projective varieties of arbitrary dimension, and measuring the failure of a given projective variety to satisfy certain rationality properties, such as being uniruled, rationally connected, unirational, stably rational or rational. Then we review a series of results describing these invariants for various classes of projective surfaces.

Notes

Acknowledgements

I would like to thank the Organizers of the Workshop Birational geometry of surfaces and Andrea Bruno for encouraging me to think about this topic in view of the Workshop. I am grateful to Gian Pietro Pirola for introducing me to these problems when I was a Ph.D. student. I would also like to thank Andreas Knutsen for valuable suggestions.

References

  1. 1.
    Alzati, A., Pirola, G.P.: On the holomorphic length of a complex projective variety. Arch. Math. (Basel) 59, 392–402 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. 3(25), 75–95 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, W.: Abelian surfaces with \((1,2)\)-polarization. In: Oda, T. (ed.) Algebraic Geometry, Sendai, 1985, pp. 41–84, Adv. Stud. Pure Math., vol. 10. North-Holland, Amsterdam (1987)Google Scholar
  4. 4.
    Bastianelli, F., Pirola, G.P., Stoppino, L.: Galois closure and Lagrangian varieties. Adv. Math. 225, 3463–3501 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bastianelli, F.: On symmetric products of curves. Trans. Am. Math. Soc. 364, 2493–2519 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bastianelli, F., Cortini, R., De Poi, P.: The gonality theorem of Noether for hypersurfaces. J. Algebraic Geom. 23, 313–339 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bastianelli, F.: On irrationality of surfaces in \(\mathbb{P}^3\). arXiv:1603.05543 (2016)
  8. 8.
    Bastianelli, F., De Poi, P., Ein, L., Lazarsfeld, R., Ullery, B.: Measures of irrationality for hypersurfaces of large degree. arXiv:1511.01359 (2016)
  9. 9.
    Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P.: A note on gonality of curves on general hypersurfaces (2016) (preprint) Google Scholar
  10. 10.
    Beauville, A.: Complex Algebraic Surfaces, 2nd edn. London Mathematical Society Student Texts, vol. 34. Cambridge University Press, Cambridge (1996)Google Scholar
  11. 11.
    Beauville, A., Colliot-Thélène, J.L., Sansuc, J.J., Swinnerton-Dyer, P.: Variétés stablement rationnelles non rationnelles. Ann. Math. 121, 283–318 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Birkenhake, C., Lange, H.: Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302. Springer, Berlin (2004)Google Scholar
  13. 13.
    Chen, X.: Rational curves on K3 surfaces. J. Algebraic Geom. 8, 245–278 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ciliberto, C.: Alcune applicazioni di un classico procedimento di Castelnuovo. Seminari di geometria. 1982–1983 (Bologna, 1982/1983), pp. 17–43. Univ. Stud. Bologna, Bologna (1984)Google Scholar
  15. 15.
    Ciliberto, C., Knutsen, A.L.: On k-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkhler manifolds. J. Math. Pures Appl. 101, 473–494 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cortini, R.: Il grado di irrazionalità di varietà algebriche, Ph.D. thesis. Università degli Studi di Genova, Genova (1999)Google Scholar
  18. 18.
    de Fernex, T., Fusi, D.: Rationality in families of threefolds. Rend. Circ. Mat. Palermo 62, 127–135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dolgačev, I.V.: Special algebraic \(K3\)-surfaces. Math. URRS Izvestija 7, 833–846 (1973)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guerra, L., Pirola, G.P.: On rational maps from a general surface in \(\mathbb{P}^3\) to surfaces of general type. Adv. Geom. 8, 289–307 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Iskovskih, V.A., Manin, JuI: Three-dimensional quartics and counterexamples to the Lüroth problem. Mat. Sbornik 86, 140–166 (1971)Google Scholar
  22. 22.
    Knutsen, A.L.: Remarks on families of singular curves with hyperelliptic normalizations. Indag. Math. 19, 217–238 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lopez, A.F., Pirola, G.P.: On the curves through a general point of a smooth surface in \(\mathbb{P}^3\). Math. Z. 219, 93–106 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mumford, D.: Rational equivalence of \(0\)-cycles on surfaces. J. Math. Kyoto Univ. 9, 195–204 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Moh, T.T., Heinzer, W.: A generalized Lüroth theorem for curves. J. Math. Soc. Japan 31, 85–86 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moh, T.T., Heinzer, W.: On the Lüroth semigroup and Weierstrass canonical divisor. J. Algebra 77, 62–73 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mori, S., Mukai, S.: The uniruledness of the moduli space of curves of genus 11. In: Raynaud, M., Shioda, T. (eds.) Algebraic Geometry (Tokyo/Kyoto, 1982), pp. 334–353, Lecture Notes in Mathematics, vol. 1016. Springer, Berlin (1983)Google Scholar
  28. 28.
    Tokunaga, H., Yoshihara, H.: Degree of irrationality of abelian surfaces. J. Algebra 174, 1111–1121 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yoshihara, H.: Degree of irrationality of an algebraic surface. J. Algebra 67, 634–640 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yoshihara, H.: Quotients of abelian surfaces. Publ. Res. Inst. Math. Sci. 31, 135–143 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yoshihara, H.: Degree of irrationality of a product of two elliptic curves. Proc. Am. Math. Soc. 124, 1371–1375 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yoshihara, H.: Existence of curves of genus three on a product of two elliptic curves. J. Math. Soc. Japan 49, 531–537 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yoshihara, H.: A note on the inequality of degrees of irrationalities of algebraic surfaces. J. Algebra 207, 272–275 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yoshihara, H.: Degree of irrationality of hyperelliptic surfaces. Algebra Colloq. 7, 319–328 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu, G.: Subvarieties of general hypersurfaces in projective spaces. J. Differ. Geom. 39, 581–589 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Unione Matematica Italiana 2017

Authors and Affiliations

  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di BariBariItaly

Personalised recommendations