Advertisement

Bollettino dell'Unione Matematica Italiana

, Volume 9, Issue 4, pp 421–434 | Cite as

A strong convergence theorem for finding a common fixed point of a finite family of Bregman nonexpansive mappings in Banach spaces which solves a generalized mixed equilibrium problem

  • Vahid DarvishEmail author
Article
  • 119 Downloads

Abstract

In this paper, we study an iterative method for finding a common fixed point of a finite family of Bregman strongly nonexpansive mappings in real reflexive Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which solve a generalized mixed equilibrium problem. As a special case, we solve mixed variational inequality problems.

Keywords

Banach space Bregman strongly nonexpansive mapping  Fixed point Generalized mixed equilibrium Mixed variational inequality 

Mathematics Subject Classification

47H05 47J25 58C30 

References

  1. 1.
    Ceng, L.C., Yao, J.C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 214, 186–201 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Natl. Acad. Sci. USA 56, 1080–1086 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Flam, S.D., Antipin, A.S.: Equilibrium progamming using proximal-link algolithms. Math. Program. 78, 29–41 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Aslam Noor, M., Oettli, W.: On general nonlinear complementarity problems and quasi-equilibria. Matematiche (Catania). 49, 313–331 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Suantai, S., Cho, Y.J., Cholamjiak, P.: Halperns iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Comput. Math. Appl. 64, 489–499 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Halpern, B.: Fixed points of non-expanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)CrossRefzbMATHGoogle Scholar
  12. 12.
    Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kumam, W., Witthayarat, U., Kumam, P., Suantaie, S., Wattanawitoon, K.: Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces. Optim. J. Math. Program. Op. Res. 65, 265–280 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zegeye, H.: Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Filomat. 7, 1525–1536 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Darvish, V.: Strong convergence theorem for generalized mixed equilibrium problems and Bregman nonexpansive mapping in Banach spaces. (To appear in Math. Moravica)Google Scholar
  16. 16.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)Google Scholar
  20. 20.
    Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)Google Scholar
  21. 21.
    Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Applied Optimization, vol. 40. Kluwer Academic, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Reich, S.: A weak convergence theorem for the alternating method with Bregman distance. In: Kartsatos AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318. Marcel Dekker, New York (1996)Google Scholar
  24. 24.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd ed., Springer-Verlag, New York (1993)Google Scholar
  25. 25.
    Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Optimization and Its Applications, vol. 49, pp. 301–316. (2011). http://link.springer.com/chapter/10.1007%2F978-1-4419-9569-8_15
  27. 27.
    Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Martin-Marquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Contin. Dyn. Syst. Ser. S. 6, 1043–1063 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Peng, J.W., Yao, J.C.: Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems. Math. Comp. Model. 49, 1816–1828 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Unione Matematica Italiana 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAmirkabir University of Technology TehranIran

Personalised recommendations