Skip to main content
Log in

A strong convergence theorem for finding a common fixed point of a finite family of Bregman nonexpansive mappings in Banach spaces which solves a generalized mixed equilibrium problem

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

In this paper, we study an iterative method for finding a common fixed point of a finite family of Bregman strongly nonexpansive mappings in real reflexive Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which solve a generalized mixed equilibrium problem. As a special case, we solve mixed variational inequality problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ceng, L.C., Yao, J.C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 214, 186–201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Natl. Acad. Sci. USA 56, 1080–1086 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Flam, S.D., Antipin, A.S.: Equilibrium progamming using proximal-link algolithms. Math. Program. 78, 29–41 (1997)

    Article  MathSciNet  Google Scholar 

  7. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aslam Noor, M., Oettli, W.: On general nonlinear complementarity problems and quasi-equilibria. Matematiche (Catania). 49, 313–331 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Suantai, S., Cho, Y.J., Cholamjiak, P.: Halperns iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Comput. Math. Appl. 64, 489–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halpern, B.: Fixed points of non-expanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  12. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumam, W., Witthayarat, U., Kumam, P., Suantaie, S., Wattanawitoon, K.: Convergence theorem for equilibrium problem and Bregman strongly nonexpansive mappings in Banach spaces. Optim. J. Math. Program. Op. Res. 65, 265–280 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Zegeye, H.: Convergence theorems for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Filomat. 7, 1525–1536 (2014)

    Article  MathSciNet  Google Scholar 

  15. Darvish, V.: Strong convergence theorem for generalized mixed equilibrium problems and Bregman nonexpansive mapping in Banach spaces. (To appear in Math. Moravica)

  16. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)

    Book  MATH  Google Scholar 

  17. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39 (2006)

  20. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  21. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Applied Optimization, vol. 40. Kluwer Academic, Dordrecht (2000)

    Book  MATH  Google Scholar 

  22. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reich, S.: A weak convergence theorem for the alternating method with Bregman distance. In: Kartsatos AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318. Marcel Dekker, New York (1996)

  24. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd ed., Springer-Verlag, New York (1993)

  25. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Optimization and Its Applications, vol. 49, pp. 301–316. (2011). http://link.springer.com/chapter/10.1007%2F978-1-4419-9569-8_15

  27. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Martin-Marquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Contin. Dyn. Syst. Ser. S. 6, 1043–1063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng, J.W., Yao, J.C.: Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems. Math. Comp. Model. 49, 1816–1828 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Darvish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvish, V. A strong convergence theorem for finding a common fixed point of a finite family of Bregman nonexpansive mappings in Banach spaces which solves a generalized mixed equilibrium problem. Boll Unione Mat Ital 9, 421–434 (2016). https://doi.org/10.1007/s40574-016-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0059-z

Keywords

Mathematics Subject Classification

Navigation