Skip to main content
Log in

Metal-Induced Pulmonary Fibrosis

  • Metals and Health (A Barchowsky, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The incidence of pulmonary fibrosis is increasing worldwide and may, in part, be due to occupational and environmental exposures. Secondary fibrotic interstitial lung diseases may be mistaken for idiopathic pulmonary fibrosis with important implications for both disease management and prognosis. The purposes of this review are to shed light on possible underlying causes of interstitial pulmonary fibrosis and to encourage dialogue on the importance of acquiring a thorough patient history of occupational and environmental exposures.

Recent Findings

A recent appreciation for various occupational and environmental metals inducing both antigen-specific immune reactions in the lung and nonspecific “innate” immune system responses has emerged and with it a growing awareness of the potential hazards to the lung caused by low-level metal exposures. Advancements in the contrast and quality of high-resolution CT scans and identification of histopathological patterns of interstitial pulmonary fibrosis have improved clinical diagnostics. Moreover, recent findings indicate specific hotspots of pulmonary fibrosis within the USA. Increased prevalence of lung disease in these areas appears to be linked to occupational/environmental metal exposure and ethnic susceptibility/vulnerability.

Summary

A systematic overview of possible occupational and environmental metals causing interstitial pulmonary fibrosis and a detailed evaluation of vulnerable/susceptible populations may facilitate a broader understanding of potential underlying causes and highlight risks of disease predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3(2):202–19.

    CAS  PubMed  Google Scholar 

  2. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. https://doi.org/10.1164/rccm.2009-040GL.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc. 2006;3(4):293–8. https://doi.org/10.1513/pats.200512-131TK.

    Article  PubMed  Google Scholar 

  4. Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015;46(3):795–806. https://doi.org/10.1183/09031936.00185114.

    Article  PubMed  Google Scholar 

  5. Marshall DC, Salciccioli JD, Shea BS, Akuthota P. Trends in mortality from idiopathic pulmonary fibrosis in the European Union: an observational study of the WHO mortality database from 2001-2013. Eur Respir J. 2018;51(1):1701603. https://doi.org/10.1183/13993003.01603-2017.

    Article  PubMed  Google Scholar 

  6. • Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Shirude S, Naghavi M, et al. Trends and Patterns of Differences in Chronic Respiratory Disease Mortality Among US Counties, 1980–2014. JAMA. 2017;318(12):1136–49. https://doi.org/10.1001/jama.2017.11747 The indicated recent publication is of particular importance given the reported high incidence of interstitial lung disease-related mortality in the four corners area. These findings may warrant further research into underlying causes including environmental or genetic factors.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aryal S, Nathan SD. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis. Expert opinion on emerging drugs. 2018;23(2):159–72. https://doi.org/10.1080/14728214.2018.1471465.

    Article  CAS  PubMed  Google Scholar 

  8. Raghu G, Collins BF, Xia D, Schmidt R, Abraham JL. Pulmonary fibrosis associated with aluminum trihydrate (Corian) dust. N Engl J Med. 2014;370(22):2154–6. https://doi.org/10.1056/NEJMc1404786.

    Article  CAS  PubMed  Google Scholar 

  9. Gilks B, Churg A. Aluminum-induced pulmonary fibrosis: do fibers play a role? Am Rev Respir Dis. 1987;136(1):176–9. https://doi.org/10.1164/ajrccm/136.1.176.

    Article  CAS  PubMed  Google Scholar 

  10. Carney J, McAdams P, McCluskey J, Roggli VL. Aluminum-induced pneumoconiosis confirmed by analytical scanning electron microscopy: a case report and review of the literature. Ultrastruct Pathol. 2016;40(3):155–8. https://doi.org/10.3109/01913123.2016.1141824.

    Article  PubMed  Google Scholar 

  11. Jederlinic PJ, Abraham JL, Churg A, Himmelstein JS, Epler GR, Gaensler EA. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them. Am Rev Respir Dis. 1990;142(5):1179–84. https://doi.org/10.1164/ajrccm/142.5.1179.

    Article  CAS  PubMed  Google Scholar 

  12. Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S. Aluminosis--detection of an almost forgotten disease with HRCT. J Occup Med Toxicol. 2006;1:4. https://doi.org/10.1186/1745-6673-1-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Vuyst P, Dumortier P, Schandene L, Estenne M, Verhest A, Yernault JC. Sarcoidlike lung granulomatosis induced by aluminum dusts. Am Rev Respir Dis 1987;135(2):493–497. doi:https://doi.org/10.1164/arrd.1987.135.2.493.

  14. Taiwo OA. Diffuse parenchymal diseases associated with aluminum use and primary aluminum production. J Occup Environ Med. 2014;56(5 Suppl):S71–2. https://doi.org/10.1097/JOM.0000000000000054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol. 1982;13(8):694–9.

    Article  CAS  Google Scholar 

  16. Miller RR, Churg AM, Hutcheon M, Lom S. Pulmonary alveolar proteinosis and aluminum dust exposure. Am Rev Respir Dis. 1984;130(2):312–5. https://doi.org/10.1164/arrd.1984.130.2.312.

    Article  CAS  PubMed  Google Scholar 

  17. Townsend MC, Sussman NB, Enterline PE, Morgan WK, Belk HD, Dinman BD. Radiographic abnormalities in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant. Am Rev Respir Dis. 1988;138(1):90–5. https://doi.org/10.1164/ajrccm/138.1.90.

    Article  CAS  PubMed  Google Scholar 

  18. Albuquerque DA, Seidl VR, Santos VC, Oliveira-Neto JA, Capelozzi VL, Rocco PR, et al. The effect of experimental pleurodesis caused by aluminum hydroxide on lung and chest wall mechanics. Lung. 2001;179(5):293–303. https://doi.org/10.1007/s004080000069.

    Article  CAS  PubMed  Google Scholar 

  19. Halatek T, Opalska B, Lao I, Stetkiewicz J, Rydzynski K. Pneumotoxicity of dust from aluminum foundry and pure alumina: a comparative study of morphology and biomarkers in rats. Int J Occup Med Environ Health. 2005;18(1):59–70.

    PubMed  Google Scholar 

  20. Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, et al. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One. 2014;9(9):e106870. https://doi.org/10.1371/journal.pone.0106870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A. A meta-analysis of arsenic exposure and lung function: is there evidence of restrictive or obstructive lung disease? Curr Environ Health Rep. 2018;5(2):244–54. https://doi.org/10.1007/s40572-018-0192-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sengupta A, Maji A, Jash D, Maikap M. Unexplained dyspnea in a patient of chronic arsenicosis: a diagnostic challenge and learning curve for physicians. Lung India. 2015;32(2):169–71. https://doi.org/10.4103/0970-2113.152640.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg HG. Systemic arterial disease and chronic arsenicism in infants. Arch Pathol Lab Med. 1974;97:360–5.

    CAS  Google Scholar 

  24. Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S. Chronic arsenic toxicity in West Bengal--the worst calamity in the world. J Indian Med Assoc. 1998;96(1):4–7 18.

    CAS  PubMed  Google Scholar 

  25. Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborti D, et al. Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol. 2000;29(6):1047–52.

    Article  CAS  Google Scholar 

  26. von Ehrenstein OS, Mazumder DN, Yuan Y, Samanta S, Balmes J, Sil A, et al. Decrements in lung function related to arsenic in drinking water in West Bengal, India. Am J Epidemiol. 2005;162(6):533–41. https://doi.org/10.1093/aje/kwi236.

    Article  Google Scholar 

  27. De BK, Majumdar D, Sen S, Guru S, Kundu S. Pulmonary involvement in chronic arsenic poisoning from drinking contaminated ground-water. J Assoc Physicians India. 2004;52:395–400.

    CAS  PubMed  Google Scholar 

  28. Mazumder DN, Steinmaus C, Bhattacharya P, von Ehrenstein OS, Ghosh N, Gotway M, et al. Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology. 2005;16(6):760–5.

    Article  Google Scholar 

  29. Kozul CD, Hampton TH, Davey JC, Gosse JA, Nomikos AP, Eisenhauer PL, et al. Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environ Health Perspect. 2009;117(7):1108–15. https://doi.org/10.1289/ehp.0800199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lantz RC, Lynch BJ, Boitano S, Poplin GS, Littau S, Tsaprailis G, et al. Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Environ Health Perspect. 2007;115(4):586–91. https://doi.org/10.1289/ehp.9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramsey KA, Larcombe AN, Sly PD, Zosky GR. In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice. BMC Pharmacol Toxicol. 2013;14:13. https://doi.org/10.1186/2050-6511-14-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang CK, Lee HL, Chang H, Tsai MH, Kuo YC, Lin P. Enhancement between environmental tobacco smoke and arsenic on emphysema-like lesions in mice. J Hazard Mater. 2012;221-222:256–63. https://doi.org/10.1016/j.jhazmat.2012.04.042.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Tao S, Lian F, Chau BT, Chen J, Sun G, et al. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol. 2012;265(3):292–9. https://doi.org/10.1016/j.taap.2012.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burchiel SW, Mitchell LA, Lauer FT, Sun X, McDonald JD, Hudson LG, et al. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol. 2009;241(3):253–9. https://doi.org/10.1016/j.taap.2009.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hays AM, Srinivasan D, Witten ML, Carter DE, Lantz RC. Arsenic and cigarette smoke synergistically increase DNA oxidation in the lung. Toxicol Pathol. 2006;34(4):396–404. https://doi.org/10.1080/01926230600824926.

    Article  CAS  PubMed  Google Scholar 

  36. Webb DR, Wilson SE, Carter DE. Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. Toxicol Appl Pharmacol. 1986;82(3):405–16.

    Article  CAS  Google Scholar 

  37. Mandal P. Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedeberg's Arch Pharmacol. 2017;390(5):443–55. https://doi.org/10.1007/s00210-017-1351-x.

    Article  CAS  Google Scholar 

  38. Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, et al. Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect. 2009;117(11):1718–23. https://doi.org/10.1289/ehp.0900566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goyer RA. Transplacental transfer of cadmium and fetal effects. Fundam Appl Toxicol. 1991;16(1):22–3.

    Article  CAS  Google Scholar 

  40. Sunderman FW Jr. Carcinogenic effects of metals. Fed Proc. 1978;37(1):40–6.

    CAS  PubMed  Google Scholar 

  41. Léonard AGGB, Jacquet P, Carcinogenicity LRR. Mutagenicity, and teratogenicity of industrially used metals. Mutagenicity, carcinogenicity. In: And teratogenicity of industrial pollutants; 1984.

    Google Scholar 

  42. Singh PK, Gale GR, Jones SG, Jones MM. Mobilization of aged in vivo cadmium deposits by diethyl dimercaptosuccinate. Toxicol Lett. 1988;41(3):239–44.

    Article  CAS  Google Scholar 

  43. Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108(Suppl 4):685–96.

    Article  CAS  Google Scholar 

  44. Smith TJ, Petty TL, Reading JC, Lakshminarayan S. Pulmonary effects of chronic exposure to airborne cadmium. Am Rev Respir Dis. 1976;114(1):161–9. https://doi.org/10.1164/arrd.1976.114.1.161.

    Article  CAS  PubMed  Google Scholar 

  45. Townshend RH. Acute cadmium pneumonitis: a 17-year follow-up. Br J Ind Med. 1982;39(4):411–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelikoff JT. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol. 2014;26(1):48–58. https://doi.org/10.3109/08958378.2013.851746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS. Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol. 1992;116(1):30–7.

    Article  CAS  Google Scholar 

  48. Valverde M, Fortoul TI, Diaz-Barriga F, Mejia J, del Castillo ER. Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis 2000;15(2):109–114.

  49. Skoczynska A, Gruszczynski L, Wojakowska A, Scieszka M, Turczyn B, Schmidt E. Association between the type of workplace and lung function in copper miners. Biomed Res Int. 2016;2016:5928572. https://doi.org/10.1155/2016/5928572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pimentel JC, Marques F. "vineyard sprayer's lung": a new occupational disease. Thorax. 1969;24(6):678–88.

    Article  CAS  Google Scholar 

  51. Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, et al. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep. 2018;8(1):4499. https://doi.org/10.1038/s41598-018-22556-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JS, Adamcakova-Dodd A, O'Shaughnessy PT, Grassian VH, Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol. 2011;8:29. https://doi.org/10.1186/1743-8977-8-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir. 2008;24(13):6659–67. https://doi.org/10.1021/la7039916.

    Article  CAS  PubMed  Google Scholar 

  54. Barceloux DG. Molybdenum. J Toxicol Clin Toxicol. 1999;37(2):231–7.

    Article  CAS  Google Scholar 

  55. Ott HC, Prior C, Herold M, Riha M, Laufer G, Ott G. Respiratory symptoms and bronchoalveolar lavage abnormalities in molybdenum exposed workers. Wien Klin Wochenschr. 2004;116(Suppl 1):25–30.

    CAS  PubMed  Google Scholar 

  56. Selden AI, Persson B, Bornberger-Dankvardt SI, Winstrom LE, Bodin LS. Exposure to cobalt chromium dust and lung disorders in dental technicians. Thorax. 1995;50(7):769–72.

    Article  CAS  Google Scholar 

  57. Selden A, Sahle W, Johansson L, Sorenson S, Persson B. Three cases of dental technician's pneumoconiosis related to cobalt-chromium-molybdenum dust exposure. Chest. 1996;109(3):837–42.

    Article  CAS  Google Scholar 

  58. National Toxicology P. NTP toxicology and carcinogenesis studies of molybdenum trioxide (CAS no. 1313-27-5) in F344 rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser. 1997;462:1–269.

    Google Scholar 

  59. Tanaka J, Moriyama H, Terada M, Takada T, Suzuki E, Narita I, et al. An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease. BMJ Open. 2014;4(3):e004407. https://doi.org/10.1136/bmjopen-2013-004407.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kusaka Y, Yokoyama K, Sera Y, Yamamoto S, Sone S, Kyono H, et al. Respiratory diseases in hard metal workers: an occupational hygiene study in a factory. Br J Ind Med. 1986;43(7):474–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaneko Y, Kikuchi N, Ishii Y, Kawabata Y, Moriyama H, Terada M, et al. Upper lobe-dominant pulmonary fibrosis showing deposits of hard metal component in the fibrotic lesions. Intern Med. 2010;49(19):2143–5.

    Article  Google Scholar 

  62. Swennen B, Buchet JP, Stanescu D, Lison D, Lauwerys R. Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br J Ind Med. 1993;50(9):835–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lison D, Lauwerys R. In vitro cytotoxic effects of cobalt-containing dusts on mouse peritoneal and rat alveolar macrophages. Environ Res. 1990;52(2):187–98.

    Article  CAS  Google Scholar 

  64. Lison D, Lauwerys R. Biological responses of isolated macrophages to cobalt metal and tungsten carbide-cobalt powders. Pharmacol Toxicol. 1991;69(4):282–5.

    Article  CAS  Google Scholar 

  65. Chazel V, Gerasimo P, Dabouis V, Laroche P, Paquet F. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank. Radiat Prot Dosim. 2003;105(1–4):163–6.

    Article  CAS  Google Scholar 

  66. Osman AA, Geipel G, Bernhard G, Worch E. Investigation of uranium binding forms in selected German mineral waters. Environ Sci Pollut Res Int. 2013;20(12):8629–35. https://doi.org/10.1007/s11356-013-1822-7.

    Article  CAS  PubMed  Google Scholar 

  67. Schins RP, Borm PJ. Mechanisms and mediators in coal dust induced toxicity: a review. Ann Occup Hyg. 1999;43(1):7–33.

    Article  CAS  Google Scholar 

  68. Tasat DR, de Rey BM. Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environ Res. 1987;44(1):71–81.

    Article  CAS  Google Scholar 

  69. ATSDR. Toxicological profile for uranium. In: Services UDoHaH, editor; 1999.

    Google Scholar 

  70. Monleau M, De Meo M, Paquet F, Chazel V, Dumenil G, Donnadieu-Claraz M. Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol Sci. 2006;89(1):287–95. https://doi.org/10.1093/toxsci/kfj010.

    Article  PubMed  Google Scholar 

  71. Gazin V, Kerdine S, Grillon G, Pallardy M, Raoul H. Uranium induces TNF alpha secretion and MAPK activation in a rat alveolar macrophage cell line. Toxicol Appl Pharmacol. 2004;194(1):49–59.

    Article  CAS  Google Scholar 

  72. Samet JM, Young RA, Morgan MV, Humble CG, Epler GR, McLoud TC. Prevalence survey of respiratory abnormalities in New Mexico uranium miners. Health Phys. 1984;46(2):361–70.

    Article  CAS  Google Scholar 

  73. Kocher E, Rendon KJ, Kesler D, Boyce TW, Myers O, Evans K, et al. Uranium workers demonstrate lower lobe predominant irregular Pneumoconiotic opacities on chest radiographs. J Health Care Poor Underserved. 2016;27(4A):116–27. https://doi.org/10.1353/hpu.2016.0193.

    Article  PubMed  Google Scholar 

  74. Mapel DW, Coultas DB, James DS, Hunt WC, Stidley CA, Gilliland FD. Ethnic differences in the prevalence of nonmalignant respiratory disease among uranium miners. Am J Public Health. 1997;87(5):833–8.

    Article  CAS  Google Scholar 

  75. Walsh L, Grosche B, Schnelzer M, Tschense A, Sogl M, Kreuzer M. A review of the results from the German Wismut uranium miners cohort. Radiat Prot Dosim. 2015;164(1–2):147–53. https://doi.org/10.1093/rpd/ncu281.

    Article  CAS  Google Scholar 

  76. Schubauer-Berigan MK, Daniels RD, Pinkerton LE. Radon exposure and mortality among white and American Indian uranium miners: an update of the Colorado plateau cohort. Am J Epidemiol. 2009;169(6):718–30. https://doi.org/10.1093/aje/kwn406.

    Article  PubMed  Google Scholar 

  77. Archer VE, Renzetti AD, Doggett RS, Jarvis JQ, Colby TV. Chronic diffuse interstitial fibrosis of the lung in uranium miners. J Occup Environ Med. 1998;40(5):460–74.

    Article  CAS  Google Scholar 

  78. U.S. Geographical Survey (USGS) 2014. http://minerals.usgs.gov/minerals/pubs/commodity/vanadium/mcs-2014-vanad.pdf.

  79. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. In: Humans IWGotEoCRt, editor. IARC Monogr Eval Carcinog Risks Hum. 2006/08/16 ed2006. p. 1–294.

  80. Sadiq MMAA. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires. Atmos Environ. 1994;28(13):2249–53.

    Article  Google Scholar 

  81. Peltier RE, Lippmann M. Residual oil combustion: 2. Distributions of airborne nickel and vanadium within new York City. J Expo Sci Environ Epidemiol. 2010;20(4):342–50. https://doi.org/10.1038/jes.2009.28.

    Article  CAS  PubMed  Google Scholar 

  82. Campen MJ, Nolan JP, Schladweiler MC, Kodavanti UP, Evansky PA, Costa DL, et al. Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: a potential interaction between nickel and vanadium sulfate. Toxicol Sci. 2001;64(2):243–52.

    Article  CAS  Google Scholar 

  83. Irsigler GB, Visser PJ, Spangenberg PA. Asthma and chemical bronchitis in vanadium plant workers. Am J Ind Med. 1999;35(4):366–74.

    Article  CAS  Google Scholar 

  84. Hauser R, Elreedy S, Hoppin JA, Christiani DC. Airway obstruction in boilermakers exposed to fuel oil ash. A prospective investigation. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1478–84. https://doi.org/10.1164/ajrccm.152.5.7582280.

    Article  CAS  PubMed  Google Scholar 

  85. Lees RE. Changes in lung function after exposure to vanadium compounds in fuel oil ash. Br J Ind Med. 1980;37(3):253–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sjoberg SG. Vanadium bronchitis from cleaning oil-fired boilers. AMA archives of industrial health. 1955;11(6):505–12.

    CAS  PubMed  Google Scholar 

  87. Woodin MA, Liu Y, Hauser R, Smith TJ, Christiani DC. Pulmonary function in workers exposed to low levels of fuel-oil ash. J Occup Environ Med. 1999;41(11):973–80.

    Article  CAS  Google Scholar 

  88. Vandenplas O, Binard-Van Cangh F, Gregoire J, Brumagne A, Larbanois A. Fever and neutrophilic alveolitis caused by a vanadium based catalyst. Occup Environ Med. 2002;59(11):785–7.

    Article  CAS  Google Scholar 

  89. Eeftens M, Hoek G, Gruzieva O, Molter A, Agius R, Beelen R, et al. Elemental composition of particulate matter and the association with lung function. Epidemiology. 2014;25(5):648–57. https://doi.org/10.1097/EDE.0000000000000136.

    Article  PubMed  Google Scholar 

  90. (U.S.). NRC. Medical and biologic effects of environmental pollutants. In: Pollutants CoBEoA, editor. Vanadium. Washington: National Academy of Sciences.

  91. Vouk V. Handbook on the toxicology of metals. 4th ed. vanadium. In: Amsterdam Elsevier-North Holland biomedical press; 1979.

    Google Scholar 

  92. WHO/Europe. Chapter 6.12 Vanadium. http://www.euro.who.int/__data/assets/pdf_file/0016/123082/AQG2ndEd_6_12vanadium.PDF. Accessed 8/5/2018.

  93. Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, et al. Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci. 2003;74(2):287–96. https://doi.org/10.1093/toxsci/kfg136.

    Article  CAS  PubMed  Google Scholar 

  94. Ingram JL, Antao-Menezes A, Turpin EA, Wallace DG, Mangum JB, Pluta LJ, et al. Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis. Respir Res. 2007;8:34. https://doi.org/10.1186/1465-9921-8-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Walters DM, White KM, Patel U, Davis MJ, Veluci-Marlow RM, Bhupanapadu Sunkesula SR, et al. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). FASEB J. 2014;28(3):1098–112. https://doi.org/10.1096/fj.13-235044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zychowski KE, Kodali V, Harmon M, Tyler CR, Sanchez B, Ordonez Suarez Y, et al. Respirable uranyl-vanadate-containing particulate matter derived from a legacy uranium mine site exhibits potentiated cardiopulmonary toxicity. Toxicol Sci. 2018;164(1):101–14. https://doi.org/10.1093/toxsci/kfy064.

    Article  PubMed  Google Scholar 

  97. Lewis J, Hoover J, MacKenzie D. Mining and environmental health disparities in native American communities. Curr Environ Health Rep. 2017;4(2):130–41. https://doi.org/10.1007/s40572-017-0140-5.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Samet JM. Some current challenges in research on air pollution and health. Salud Publica Mex. 2014;56(4):379–85.

    Article  Google Scholar 

  99. Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2013;188(6):733–748. doi:https://doi.org/10.1164/rccm.201308-1483ST.

  100. Guha Mazumder DN. Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(1):141–63.

    Article  CAS  Google Scholar 

  101. Mazumder DN. Treatment of chronic arsenic toxicity as observed in West Bengal. J Indian Med Assoc. 1996;94(2):41–2.

    CAS  PubMed  Google Scholar 

  102. BM B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49(2):167–79. https://doi.org/10.1165/rcmb.2013-0094TR.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jesse Denson for editing this manuscript.

Funding

This work was supported by NIEHS (K99 ES029104; R01 ES026673), HRSA (2H1GRH27375, H37RH0057, D04RH31788) and Alpha Foundation (AFC719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Zychowski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in cited studies involving human participants conducted by the authors were in accordance with the ethical standards of the University of New Mexico Institutional Review Board. Animal studies performed by the authors were performed in accordance with the Animal Care and Use Committee.

Additional information

This article is part of the Topical Collection on Metals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assad, N., Sood, A., Campen, M.J. et al. Metal-Induced Pulmonary Fibrosis. Curr Envir Health Rpt 5, 486–498 (2018). https://doi.org/10.1007/s40572-018-0219-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-018-0219-7

Keywords

Navigation