Advertisement

Current Environmental Health Reports

, Volume 5, Issue 1, pp 88–99 | Cite as

Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors

  • Hongtai Huang
  • Aolin Wang
  • Rachel Morello-Frosch
  • Juleen Lam
  • Marina Sirota
  • Amy Padula
  • Tracey J. Woodruff
Susceptibility Factors in Environmental Health (B Ritz and Z Liew, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Susceptibility Factors in Environmental Health

Abstract

Purpose of Review

The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health?

Recent Findings

There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem.

Summary

The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.

Keywords

Cumulative risk Combined effects Environmental stressors Non-chemical stressors Social stressors Quantitative modeling 

Notes

Acknowledgments

We thank Drs. Marc Weisskopf and Zeyan Liew for their comments and suggestions.

Funding Information

This work is supported in part by the NIEHS grants R00ES021470 (AP, HH), P01ES022841, and R01ES027051, the US EPA grants RD-83564301 and RD-83543301 (TJW, RMF, AW), NLM grant K01LM012381 (MS, HH, and AW), Preterm Birth Initiative at UCSF (TJW, AP, MS, and HH), the March of Dimes Prematurity Research Center at Stanford (MS and AW), and Burroughs Wellcome Fund (MS).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    U.S. EPA (Environmental Protection Agency). Framework for cumulative risk assessment. Washington: U.S. EPA, National Center for Environmental Assessment. EPA/600/P-02/001F 2003. https://www.epa.gov/sites/production/files/2014-11/documents/frmwrk_cum_risk_assmnt.pdf.
  2. 2.
    Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–85.  https://doi.org/10.1289/ehp.1002727.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    National Research Council (U.S.). Committee on Human Biomonitoring for Environmental Toxicants. Human biomonitoring for environmental chemicals. Washington: National Academies Press; 2006. xxi, p. 291Google Scholar
  4. 4.
    U.S. CDC (Centers for Disease Control and Prevention). The Fourth National Report on Human Exposure to Environmental Chemicals: updated tables. 2017. Available: https://www.cdc.gov/exposurereport/index.html2017.
  5. 5.
    National Research Council (U.S.). Committee on the Health Risks of Phthalates., National Academies Press (U.S.). Phthalates and cumulative risk assessment: the task ahead. Washington: National Academies Press; 2008. xix, p. 188Google Scholar
  6. 6.
    •• McHale CM, Osborne G, Morello-Frosch R, Salmon AG, Sandy MS, Solomon G, et al. Assessing health risks from multiple environmental stressors: moving from G × E to I × E. Mutat Res/Rev Mutat Res. 2018;775(2018):11–20. This review provides clear definitions of several key concepts such as “cumulative risk” and “cumulative impacts.”.  https://doi.org/10.1016/j.mrrev.2017.11.003.CrossRefGoogle Scholar
  7. 7.
    deFur PL, Evans GW, Hubal EAC, Kyle AD, Morello-Frosch RA, Williams DR. Vulnerability as a function of individual and group resources in cumulative risk assessment. Environ Health Persp. 2007;115(5):817–24.  https://doi.org/10.1289/ehp.9332.CrossRefGoogle Scholar
  8. 8.
    Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. Understanding the cumulative impacts of inequalities in environmental health: implications for policy. Health Affair. 2011;30(5):879–87.  https://doi.org/10.1377/hlthaff.2011.0153.CrossRefGoogle Scholar
  9. 9.
    U.S. EPA (Environmental Protection Agency). Organophosphorus Cumulative Risk Assessment (2006 Update). Available: http://www.epa.gov/pesticides/cumulative/pra_op_methods.htm2006.
  10. 10.
    Gennings C, Sabo R, Carney E. Identifying subsets of complex mixtures most associated with complex diseases. Epidemiology. 2010;21(Supplement):S77–84.  https://doi.org/10.1097/EDE.0b013e3181ce946c.CrossRefPubMedGoogle Scholar
  11. 11.
    Varshavsky JR, Zota AR, Woodruff TJ. A novel method for calculating potency-weighted cumulative phthalates exposure with implications for identifying racial/ethnic disparities among U.S. reproductive-aged women in NHANES 2001–2012. Environ Sci Technol. 2016;50(19):10616–24.  https://doi.org/10.1021/acs.est.6b00522.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sexton K, Linder SH. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors. Am J Public Health. 2011;101(S1):81–8.CrossRefGoogle Scholar
  13. 13.
    Zota AR, Shenassa ED, Morello-Frosch R. Allostatic load amplifies the effect of blood lead levels on elevated blood pressure among middle-aged US adults: a cross-sectional study. Environ Health-Glob 2013;12.Google Scholar
  14. 14.
    Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115(8):1140–6.  https://doi.org/10.1289/ehp.9863.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Evans AM, Rice GE, Teuschler LK, Wright JM. Joint exposure to chemical and nonchemical neurodevelopmental stressors in U.S. women of reproductive age in NHANES. Int J Environ Res Public Health. 2014;11(4):4384–401.  https://doi.org/10.3390/ijerph110404384.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Bernert JT, Tu Y-H, et al. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ Health Perspect. 2004;112(5):626–30.  https://doi.org/10.1289/ehp.6617.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Apelberg BJ, Buckley TJ, White RH. Socioeconomic and racial disparities in cancer risk from air toxics in Maryland. Environ Health Perspect. 2005;113(6):693–9.  https://doi.org/10.1289/ehp.7609.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120(12):1699–704.  https://doi.org/10.1289/ehp.1205201.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Downey L, Hawkins B. Race, income, and environmental inequality in the United States. Sociol Perspect. 2008;51(4):759–81.  https://doi.org/10.1525/sop.2008.51.4.759.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pastor M, Morello-Frosch R, Sadd JL. The air is always cleaner on the other side: race, space, and ambient air toxics exposures in California. J Urban Affairs. 2005;27(2):127–48.  https://doi.org/10.1111/j.0735-2166.2005.00228.x.CrossRefGoogle Scholar
  21. 21.
    Perlin SA, Wong D, Sexton K. Residential proximity to industrial sources of air pollution: interrelationships among race, poverty, and age. J Air Waste Manage Assoc. 2001;51(3):406–21.  https://doi.org/10.1080/10473289.2001.10464271.CrossRefGoogle Scholar
  22. 22.
    Woodruff TJ, Parker JD, Kyle AD, Schoendorf KC. Disparities in exposure to air pollution during pregnancy. Environ Health Perspect. 2003;111(7):942–6.  https://doi.org/10.1289/ehp.5317.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    U.S. EPA (Environmental Protection Agency). Concepts, methods and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: a resource document. U.S. EPA. Cincinnati: National Center for Environmental Assessment. EPA/600/R-06/013F2007.Google Scholar
  24. 24.
    • Solomon GM, Morello-Frosch R, Zeise L, Faust JB. Cumulative environmental impacts: science and policy to protect communities. Annu Rev Publ Health. 2016;37(1):83–96. This reference provides a thorough description of the different categories of cumulative environmental impact methods.  https://doi.org/10.1146/annurev-publhealth-032315-021807.CrossRefGoogle Scholar
  25. 25.
    Callahan MA, Sexton K. If cumulative risk assessment is the answer, what is the question? Environ Health Persp. 2007;115(5):799–806.  https://doi.org/10.1289/ehp.9330.CrossRefGoogle Scholar
  26. 26.
    Marshall JD, Swor KR, Nguyen NP. Prioritizing environmental justice and equality: diesel emissions in southern California. Environ Sci Technol. 2014;48(7):4063–8.  https://doi.org/10.1021/es405167f.CrossRefPubMedGoogle Scholar
  27. 27.
    U.S. EPA (Environmental Protection Agency). Exposure factors handbook. 2011 ed. U.S. EPA. Washington: National Center for Environmental Assessment. EPA/600/R-09/052F. 2011. Available: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. Accessed 29 Dec 2015.
  28. 28.
    Huang H, Barzyk TM. Connecting the dots: linking environmental justice indicators to daily dose model estimates. Int J Environ Res Public Health. 2016;14(1).  https://doi.org/10.3390/ijerph14010024.
  29. 29.
    Borgelt C. Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2012;2(6):437–456, DOI:  https://doi.org/10.1002/widm.1074.
  30. 30.
    Huang H, Tornero-Velez R, Barzyk TM. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States. J Expo Sci Environ Epidemiol. 2017.  https://doi.org/10.1038/jes.2017.15.
  31. 31.
    Andersen PK, Gill RD. Cox regression-model for counting-processes—a large sample study. Ann Stat. 1982;10(4):1100–20.  https://doi.org/10.1214/aos/1176345976.CrossRefGoogle Scholar
  32. 32.
    Breiman L. Classification and regression trees. Belmont: Wadsworth International Group; 1984. x, p. 358Google Scholar
  33. 33.
    Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009. xxii, p. 745, DOI:  https://doi.org/10.1007/978-0-387-84858-7.
  34. 34.
    Vesterinen HM, Morello-Frosch R, Sen S, Zeise L, Woodruff TJ. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: systematic-review of the human and animal evidence. PLoS One. 2017;12(7):e0176331.  https://doi.org/10.1371/journal.pone.0176331.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aschan-Leygonie C, Baudet-Michel S, Mathian H, Sanders L. Gaining a better understanding of respiratory health inequalities among cities: an ecological case study on elderly males in the larger French cities. Int J Health Geogr. 2013;12(1):19.  https://doi.org/10.1186/1476-072X-12-19.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I, Casanova R, et al. Ambient air pollution and neurotoxicity on brain structure: evidence from women's health initiative memory study. Ann Neurol. 2015;78(3):466–76.  https://doi.org/10.1002/ana.24460.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Deguen S, Petit C, Delbarre A, Kihal W, Padilla C, Benmarhnia T, et al. Neighbourhood characteristics and long-term air pollution levels modify the association between the short-term nitrogen dioxide concentrations and all-cause mortality in Paris. PLoS One. 2015;10(7):e0131463.  https://doi.org/10.1371/journal.pone.0131463.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Filigrana PA, Mendez F. Blood lead levels in schoolchildren living near an industrial zone in Cali, Colombia: the role of socioeconomic condition. Biol Trace Elem Res. 2012;149(3):299–306.  https://doi.org/10.1007/s12011-012-9429-2.CrossRefPubMedGoogle Scholar
  39. 39.
    Hicken MT, Adar SD, Diez Roux AV, O'Neill MS, Magzamen S, Auchincloss AH, et al. Do psychosocial stress and social disadvantage modify the association between air pollution and blood pressure?: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2013;178(10):1550–62.  https://doi.org/10.1093/aje/kwt190.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kippler M, Tofail F, Hamadani JD, Gardner RM, Grantham-McGregor SM, Bottai M, et al. Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh. Environ Health Perspect. 2012;120(10):1462–8.  https://doi.org/10.1289/ehp.1104431.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pratt GC, Vadali ML, Kvale DL, Ellickson KM. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk. Int J Environ Res Public Health. 2015;12(5):5355–72.  https://doi.org/10.3390/ijerph120505355.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Solimini AG, D’Addario M, Villari P. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian provinces. BMC Public Health. 2015;15(1):708.  https://doi.org/10.1186/s12889-015-2018-5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vishnevetsky J, Tang D, Chang HW, Roen EL, Wang Y, Rauh V, et al. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ. Neurotoxicol Teratol. 2015;49:74–80.  https://doi.org/10.1016/j.ntt.2015.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wilson S, Burwell-Naney K, Jiang C, Zhang H, Samantapudi A, Murray R, et al. Assessment of sociodemographic and geographic disparities in cancer risk from air toxics in South Carolina. Environ Res. 2015;140:562–8.  https://doi.org/10.1016/j.envres.2015.05.016.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Allen EM, Alexander BH, MacLehose RF, Nelson HH, Ryan AD, Ramachandran G, et al. Occupational exposures and lung cancer risk among Minnesota taconite mining workers. Occup Environ Med. 2015;72(9):633–9.  https://doi.org/10.1136/oemed-2015-102825.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Balmes JR, Cisternas M, Quinlan PJ, Trupin L, Lurmann FW, Katz PP, et al. Annual average ambient particulate matter exposure estimates, measured home particulate matter, and hair nicotine are associated with respiratory outcomes in adults with asthma. Environ Res. 2014;129:1–10.  https://doi.org/10.1016/j.envres.2013.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bravo MA, Son J, de Freitas CU, Gouveia N, Bell ML. Air pollution and mortality in Sao Paulo, Brazil: effects of multiple pollutants and analysis of susceptible populations. J Exposure Sci Environ Epidemiol. 2016;26(2):150–61.  https://doi.org/10.1038/jes.2014.90.CrossRefGoogle Scholar
  48. 48.
    Dominguez-Cortinas G, Cifuentes E, Escobar ER, Martinez FD. Assessment of environmental health children’s population living in environmental injustice scenarios. J Community Health. 2012;37(6):1199–207.  https://doi.org/10.1007/s10900-012-9555-y.CrossRefPubMedGoogle Scholar
  49. 49.
    Findlay LC, Kohen DE. Bisphenol A and child and youth behaviour: Canadian Health Measures Survey 2007 to 2011. Health Rep. 2015;26(8):3–9.PubMedGoogle Scholar
  50. 50.
    Ou Y, Mai J, Zhuang J, Liu X, Wu Y, Gao X, et al. Risk factors of different congenital heart defects in Guangdong, China. Pediatr Res. 2016;79(4):549–58.  https://doi.org/10.1038/pr.2015.264.CrossRefPubMedGoogle Scholar
  51. 51.
    Gray SC, Edwards SE, Schultz BD, Miranda ML. Assessing the impact of race, social factors and air pollution on birth outcomes: a population-based study. Environ Health : A Global Access Sci Source. 2014;13(1):4.  https://doi.org/10.1186/1476-069X-13-4.CrossRefGoogle Scholar
  52. 52.
    Li L, Laurent O, Wu J. Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models. Environ Health : A Global Access Sci Source. 2016;15(1):14.  https://doi.org/10.1186/s12940-016-0112-5.CrossRefGoogle Scholar
  53. 53.
    Nelson EJ, Shacham E, Boutwell BB, Rosenfeld R, Schootman M, Vaughn M, et al. Childhood lead exposure and sexually transmitted infections: new evidence. Environ Res. 2015;143(Pt A):131–7.  https://doi.org/10.1016/j.envres.2015.10.009.CrossRefPubMedGoogle Scholar
  54. 54.
    Richmond-Bryant J, Meng Q, Cohen J, Davis JA, Svendsgaard D, Brown JS, et al. Effect measure modification of blood lead-air lead slope factors. J Exposure Sci Environ Epidemiol. 2015;25(4):411–6.  https://doi.org/10.1038/jes.2014.46.CrossRefGoogle Scholar
  55. 55.
    Vaghri Z, Guhn M, Weinberg J, Grunau RE, Yu W, Hertzman C. Hair cortisol reflects socio-economic factors and hair zinc in preschoolers. Psychoneuroendocrinology. 2013;38(3):331–40.  https://doi.org/10.1016/j.psyneuen.2012.06.009.CrossRefPubMedGoogle Scholar
  56. 56.
    Jochem WC, Razzaque A, Root ED. Effects of health intervention programs and arsenic exposure on child mortality from acute lower respiratory infections in rural Bangladesh. Int J Health Geogr. 2016;15(1):32.  https://doi.org/10.1186/s12942-016-0061-9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ribeiro AI, de Pina MF, Mitchell R. Development of a measure of multiple physical environmental deprivation. After United Kingdom and New Zealand, Portugal. Eur J Pub Health. 2015;25(4):610–7.  https://doi.org/10.1093/eurpub/cku242.CrossRefGoogle Scholar
  58. 58.
    Osiecki KM, Kim S, Chukwudozie IB, Calhoun EA. Utilizing exploratory spatial data analysis to examine health and environmental disparities in disadvantaged neighborhoods. Environ Justice (Print). 2013;6(3):81–7.  https://doi.org/10.1089/env.2013.0010.CrossRefGoogle Scholar
  59. 59.
    Shmool JL, Kubzansky LD, Newman OD, Spengler J, Shepard P, Clougherty JE. Social stressors and air pollution across New York City communities: a spatial approach for assessing correlations among multiple exposures. Environ Health : A Global Access Sci Source. 2014;13(1):91.  https://doi.org/10.1186/1476-069X-13-91.CrossRefGoogle Scholar
  60. 60.
    Genowska A, Jamiolkowski J, Szafraniec K, Stepaniak U, Szpak A, Pajak A. Environmental and socio-economic determinants of infant mortality in Poland: an ecological study. Environ Health : A Global Access Sci Source. 2015;14(1):61.  https://doi.org/10.1186/s12940-015-0048-1.CrossRefGoogle Scholar
  61. 61.
    Grineski SE, Collins TW, Morales DX. Asian Americans and disproportionate exposure to carcinogenic hazardous air pollutants: a national study. Soc Sci Med. 2017;185:71–80.  https://doi.org/10.1016/j.socscimed.2017.05.042.CrossRefPubMedGoogle Scholar
  62. 62.
    Hart JE, Kallberg H, Laden F, Costenbader KH, Yanosky JD, Klareskog L, et al. Ambient air pollution exposures and risk of rheumatoid arthritis. Arthritis Care Res. 2013;65(7):1190–6.  https://doi.org/10.1002/acr.21975.CrossRefGoogle Scholar
  63. 63.
    James P, Hart JE, Banay RF, Laden F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ Health Perspect. 2016;124(9):1344–52.  https://doi.org/10.1289/ehp.1510363.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Padilla CM, Deguen S, Lalloue B, Blanchard O, Beaugard C, Troude F, et al. Cluster analysis of social and environment inequalities of infant mortality. A spatial study in small areas revealed by local disease mapping in France. Sci Total Environ. 2013;454-455:433–41.  https://doi.org/10.1016/j.scitotenv.2013.03.027.CrossRefPubMedGoogle Scholar
  65. 65.
    Al-Wahaibi A, Zeka A. Health impacts from living near a major industrial park in Oman. BMC Public Health. 2015;15(1):524.  https://doi.org/10.1186/s12889-015-1866-3.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Best EA, Juarez-Colunga E, James K, LeBlanc WG, Serdar B. Biomarkers of exposure to polycyclic aromatic hydrocarbons and cognitive function among elderly in the United States (National Health and Nutrition Examination Survey: 2001–2002). PLoS One. 2016;11(2):e0147632.  https://doi.org/10.1371/journal.pone.0147632.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Candido da Silva AM, Moi GP, Mattos IE, Hacon Sde S. Low birth weight at term and the presence of fine particulate matter and carbon monoxide in the Brazilian Amazon: a population-based retrospective cohort study. BMC Pregnancy and Childbirth. 2014;14(1):309.  https://doi.org/10.1186/1471-2393-14-309.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care. 2016;39(10):1745–51.  https://doi.org/10.2337/dc16-0269.CrossRefPubMedGoogle Scholar
  69. 69.
    Skroder HM, Hamadani JD, Tofail F, Persson LA, Vahter ME, Kippler MJ. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr (Edinburgh, Scotland). 2015;34(5):923–30.  https://doi.org/10.1016/j.clnu.2014.09.020.CrossRefGoogle Scholar
  70. 70.
    Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect. 2014;122(12):1299–305.  https://doi.org/10.1289/ehp.1307943.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.  https://doi.org/10.1023/A:1010933404324.CrossRefGoogle Scholar
  72. 72.
    Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comp Sci. 2003;43(6):1947–58.  https://doi.org/10.1021/ci034160g.CrossRefGoogle Scholar
  73. 73.
    Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the effectiveness of a random forest classifier for land-cover classification. Isprs J Photogramm. 2012;67:93–104.  https://doi.org/10.1016/j.isprsjprs.2011.11.002.CrossRefGoogle Scholar
  74. 74.
    Diaz-Uriarte R, de Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinf. 2006;7.  https://doi.org/10.1186/1471-2105-7-3.
  75. 75.
    Hansen LK, Salamon P. Neural network ensembles. Ieee T Pattern Anal. 1990;12(10):993–1001.  https://doi.org/10.1109/34.58871.CrossRefGoogle Scholar
  76. 76.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.  https://doi.org/10.1038/nature14539.CrossRefPubMedGoogle Scholar
  77. 77.
    Cangelosi D, Pelassa S, Morini M, Conte M, Bosco MC, Eva A, et al. Artificial neural network classifier predicts neuroblastoma patients’ outcome. BMC Bioinformatics. 2016;17(Suppl 12):347.  https://doi.org/10.1186/s12859-016-1194-3.CrossRefPubMedGoogle Scholar
  78. 78.
    Inthachot M, Boonjing V, Intakosum S. Artificial neural network and genetic algorithm hybrid intelligence for predicting Thai stock price index trend. Comput Intell Neurosci. 2016;2016:3045254.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rowley HA, Baluja S, Kanade T. Neural network-based face detection. Ieee T Pattern Anal. 1998;20(1):23–38.  https://doi.org/10.1109/34.655647.CrossRefGoogle Scholar
  80. 80.
    Zhang Q. Credit risk model based on artificial neural network for financial market. J Investig Med. 2014;62(8):S110–S1.Google Scholar
  81. 81.
    Lugade V, Lin V, Farley A, Chou LS. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations. PLoS One. 2014;9(5):e97595.  https://doi.org/10.1371/journal.pone.0097595.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bivand R, Pebesma EJ, Gómez-Rubio V. Applied spatial data analysis with R. Second edition. ed. New York: Springer; 2013. xviii. p. 405.  https://doi.org/10.1007/978-1-4614-7618-4.CrossRefGoogle Scholar
  83. 83.
    Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press; 2007. xxii. p. 625.Google Scholar
  84. 84.
    Maas C, Hox J. Sufficient sample sizes for multilevel modeling. Methodology. 2005;1(3):86–92.  https://doi.org/10.1027/1614-2241.1.3.86.CrossRefGoogle Scholar
  85. 85.
    Bell SM, Edwards SW. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Persp. 2015;123(11):1193–9.CrossRefGoogle Scholar
  86. 86.
    Kapraun DF, Wambaugh JF, Ring CL, Tornero-Velez R, Setzer RW. A method for identifying prevalent chemical combinations in the U.S. population. Environ Health Persp. 2017;125(8):087017.  https://doi.org/10.1289/EHP1265.CrossRefGoogle Scholar
  87. 87.
    Gronlund CJ, Berrocal VJ, White-Newsome JL, Conlon KC, O’Neill MS. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990–2007. Environ Res. 2015;136:449–61.  https://doi.org/10.1016/j.envres.2014.08.042.CrossRefPubMedGoogle Scholar
  88. 88.
    van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, Steiner R, et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health. 2015;56(1):113–9.  https://doi.org/10.1016/j.jadohealth.2014.08.002.CrossRefPubMedGoogle Scholar
  89. 89.
    Dumont E, Johnson AC, Keller VDJ, Williams RJ. Nano silver and nano zinc-oxide in surface waters—exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut. 2015;196:341–9.  https://doi.org/10.1016/j.envpol.2014.10.022.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106(4):905–29.  https://doi.org/10.1016/j.fertnstert.2016.07.1076.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hongtai Huang
    • 1
    • 2
  • Aolin Wang
    • 1
    • 2
  • Rachel Morello-Frosch
    • 1
    • 3
  • Juleen Lam
    • 1
  • Marina Sirota
    • 2
    • 4
  • Amy Padula
    • 1
  • Tracey J. Woodruff
    • 1
  1. 1.Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive SciencesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Institute for Computational Health SciencesUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Environmental Science, Policy, and Management, and the School of Public HealthUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of PediatricsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations