Distribution function correction-based immersed boundary lattice Boltzmann method for thermal particle flows

Abstract

A novel immersed boundary lattice Boltzmann method (IB-LBM) is proposed to simulate the complex thermal particle flows. In the present scheme, the boundary condition is directly implemented by correcting the distribution function at the neighboring points around the interface, similar to the original LBM. Furthermore, an adjustment parameter is introduced for ensuring the accuracy in the boundary treatment. Those two improvements both facilitate the alleviation of computational load, for evaluation and incorporation of the boundary force and the iterative procedure involved in the previous methods. Three simulations of complex thermal flows with moving boundary, including the mixed convection in a cavity containing a rotating cylinder, the sedimentation of a cold particle in a hot fluid and the drafting-kissing-tumbling dynamics of two hot settling particles in a vertical channel are performed to validate the present IB-LBM for. The results are found to have good agreement with those available in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Douillet-Grellier T, Leclaire S, Vidal D, Bertrand F, De Vuyst F (2019) Comparison of multiphase SPH and LBM approaches for the simulation of intermittent flows. Comput Part Mech 6:695–720

    Google Scholar 

  2. 2.

    Wang M, Feng YT, Wang Y, Qu TM, He W (2019) A hybrid discrete bubble-lattice Boltzmann—discrete element model for gascharged sediments. Comput Part Mech 7:509–522

  3. 3.

    Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Suzuki K, Kawasaki T, Furumachi N, Tai Y, Yoshino M (2018) A thermal immersed boundary–lattice Boltzmann method for moving-boundary flows with Dirichlet and Neumann conditions. Int J Heat Mass Transf 121:1099–1117

    Google Scholar 

  5. 5.

    Tao S, He Q, Chen B, Yang X, Huang S (2018) One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles. Comput Math Appl 76(7):1593–1607

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J Comput Phys 195(2):602–628

    MATH  Google Scholar 

  7. 7.

    Hu Y, Li D, Niu X, Shu S (2018) Fully resolved simulation of particulate flows with heat transfer by smoothed profile-lattice Boltzmann method. Int J Heat Mass Transf 126:1164–1167

    Google Scholar 

  8. 8.

    Hu Y, Li D, Niu X, Shu S (2019) An immersed boundary-lattice Boltzmann method for electro-thermo-convection in complex geometries. Int J Therm Sci 140:280–297

    Google Scholar 

  9. 9.

    Seta T (2013) Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection. Phys Rev E 87(6):063304

    Google Scholar 

  10. 10.

    Delouei AA, Nazari M, Kayhani MH, Kang SK, Succi S (2016) Non-Newtonian particulate flow simulation: a direct-forcing immersed boundary–lattice Boltzmann approach. Physica A 447:1–20

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202(1):20–51

    MATH  Google Scholar 

  12. 12.

    Dupuis A, Chatelain P, Koumoutsakos P (2008) An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J Comput Phys 227(9):4486–4498

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354(3):173–182

    MATH  Google Scholar 

  14. 14.

    Ladd AJ (2015) Lattice-Boltzmann methods for suspensions of solid particles. Mol Phys 113(17–18):2531–2537

    Google Scholar 

  15. 15.

    Hu Y, Yuan H, Shu S, Niu X, Li M (2014) An improved momentum exchanged-based immersed boundary–lattice Boltzmann method by using an iterative technique. Comput Math Appl 68(3):140–155

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65(4):046308

    MATH  Google Scholar 

  17. 17.

    Mohamad AA, Kuzmin A (2010) A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf 53(5–6):990–996

    MATH  Google Scholar 

  18. 18.

    Li Q, Luo KH (2014) Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys Rev E 89(5):053022

    Google Scholar 

  19. 19.

    Jiang M, Liu Z (2019) A boundary thickening-based direct forcing immersed boundary method for fully resolved simulation of particle-laden flows. J Comput Phys 390:203–231

    MathSciNet  Google Scholar 

  20. 20.

    Tao S, He Q, Wang L, Huang S, Chen B (2019) A non-iterative direct-forcing immersed boundary method for thermal discrete unified gas kinetic scheme with Dirichlet boundary conditions. Int J Heat Mass Transf 137:476–488

    Google Scholar 

  21. 21.

    Li Z, Favier J, D’ Ortona U, Poncet S (2016) An immersed boundary-lattice Boltzmann method for single-and multi-component fluid flows. J Comput Phys 304:424–440

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Tao S, Zhang H, Guo Z, Wang LP (2018) A combined immersed boundary and discrete unified gas kinetic scheme for particle-fluid flows. J Comput Phys 375:498–518

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Shu C, Liu N, Chew YT (2007) A novel immersed boundary velocity correction–lattice Boltzmann method and its application to simulate flow past a circular cylinder. J Comput Phys 226(2):1607–1622

    MATH  Google Scholar 

  25. 25.

    Su SW, Lai MC, Lin CA (2007) An immersed boundary technique for simulating complex flows with rigid boundary. Comput Fluids 36(2):313–324

    MATH  Google Scholar 

  26. 26.

    Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228(6):1963–1979

    MATH  Google Scholar 

  27. 27.

    Wu J, Shu C (2010) An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows. J Comput Phys 229(13):5022–5042

    MATH  Google Scholar 

  28. 28.

    Wang X, Shu C, Wu J, Yang LM (2014) An efficient boundary condition-implemented immersed boundary-lattice Boltzmann method for simulation of 3D incompressible viscous flows. Comput Fluids 100:165–175

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Hu Y, Li D, Shu S, Niu X (2015) Study of multiple steady solutions for the 2D natural convection in a concentric horizontal annulus with a constant heat flux wall using immersed boundary-lattice Boltzmann method. Int J Heat Mass Transf 81:591–601

    Google Scholar 

  30. 30.

    Luo K, Wang Z, Fan J, Cen K (2007) Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method. Phys Rev E 76(6):066709

    Google Scholar 

  31. 31.

    Zhang H, Yu A, Zhong W, Tan Y (2015) A combined TLBM–IBM–DEM scheme for simulating isothermal particulate flow in fluid. Int J Heat Mass Transf 91:178–189

    Google Scholar 

  32. 32.

    Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39(4):325–342

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Cui X, Yao X, Wang Z, Liu M (2018) A coupled volume penalization-thermal lattice Boltzmann method for thermal flows. Int J Heat Mass Transf 127:253–266

    Google Scholar 

  34. 34.

    Teixeira C, Chen H, Freed DM (2000) Multi-speed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation. Comput Phys Commun 129(1–3):207–226

    MATH  Google Scholar 

  35. 35.

    Lallemand P, Luo LS (2003) Hybrid finite-difference thermal lattice Boltzmann equation. Int J Mod Phys B 17(01n02):41–47

    Google Scholar 

  36. 36.

    d’Humieres D (2002) Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360(1792):437–451

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Third JR, Chen Y, Müller CR (2016) Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle–fluid interaction force. Comput Part Mech 3(3):373–381

    Google Scholar 

  38. 38.

    Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228(20):7821–7836

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Zhang T, Shi B, Guo Z, Chai Z, Lu J (2012) General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. Phys Rev E 85(1):016701

    Google Scholar 

  40. 40.

    Ginzburg I (2005) Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv Water Resour 28(11):1196–1216

    Google Scholar 

  41. 41.

    Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering, vol 3. World Scientific, Singaopre

    Google Scholar 

  42. 42.

    Tao S, He Q, Chen J, Chen B, Yang G, Wu Z (2019) A non-iterative immersed boundary-lattice Boltzmann method with boundary condition enforced for fluid-solid flows. Appl Math Model 76:362–379

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Liao CC, Lin CA (2014) Mixed convection of a heated rotating cylinder in a square enclosure. Int J Heat Mass Transf 72:9–22

    Google Scholar 

  44. 44.

    Gan H, Chang J, Feng JJ, Hu HH (2003) Direct numerical simulation of the sedimentation of solid particles with thermal convection. J Fluid Mech 481:385–411

    MATH  Google Scholar 

  45. 45.

    Yang B, Chen S, Cao C, Liu Z, Zheng C (2016) Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection. Int J Heat Mass Transf 93:477–490

    Google Scholar 

  46. 46.

    Feng ZG, Michaelides EE (2009) Heat transfer in particulate flows with direct numerical simulation (DNS). Int J Heat Mass Transf 52(3–4):777–786

    MATH  Google Scholar 

  47. 47.

    Kang SK, Hassan YA (2011) A direct-forcing immersed boundary method for the thermal lattice Boltzmann method. Comput Fluids 49(1):36–45

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Xu A, Shi L, Zhao TS (2018) Thermal effects on the sedimentation behavior of elliptical particles. Int J Heat Mass Transf 126:753–764

    Google Scholar 

  49. 49.

    Tao S, Guo Z, Wang LP (2017) Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid. Powder Technol 315:126–138

    Google Scholar 

  50. 50.

    Uhlmann M (2003) First experiments with the simulation of particulate flows (No. CIEMAT–1020). Centro de Investigaciones Energeticas, Madrid

    Google Scholar 

  51. 51.

    Feng ZG, Michaelides EE (2008) Inclusion of heat transfer computations for particle laden flows. Phys Fluids 20(4):040604

    MATH  Google Scholar 

  52. 52.

    Walayat K, Zhang Z, Usman K, Chang J, Liu M (2019) Fully resolved simulations of thermal convective suspensions of elliptic particles using a multigrid fictitious boundary method. Int J Heat Mass Transf 139:802–821

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51906044 and 11902075), and the Doctoral Start-up Foundation of Dongguan University of Technology (Grant No. GC300502-39).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shi Tao or Baiman Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, S., He, Q., Chen, B. et al. Distribution function correction-based immersed boundary lattice Boltzmann method for thermal particle flows. Comp. Part. Mech. (2020). https://doi.org/10.1007/s40571-020-00344-3

Download citation

Keywords

  • Lattice Boltzmann method
  • Immersed boundary
  • Distribution function correction
  • Thermal particle flows
  • Moving boundary