Discrete element modeling of concrete under high stress level: influence of saturation ratio

Abstract

The discrete element model proposed in this paper addresses the macroscopic behavior of concrete taking into account the presence of free water in pores, thanks to a new interaction law between spherical discrete elements (DE). When concrete structures are subjected to a severe loading, e.g., an impact, material exhibits high triaxial compressive stresses which are highly influenced by the saturation ratio. In this new constitutive model, cracking and compaction are modeled at the interaction level between DEs and free water effects are taken into account by introducing a dependency between the water saturation ratio and the inelastic deformation due to the pore closure. The present numerical model has been implemented in the Yet Another Dynamic Engine code in order to deal with extreme loading situations leading to stress states characterized by a high mean stress level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Accary A, Malecot Y, Daudeville L (2019) Design and evaluation of a deformable sensor for interstitial pore pressure measurement in concrete under very high stress level. Appl Sci 9(13):2610

    Google Scholar 

  2. 2.

    Benniou H (2016) Modlisation par lments discrets du comportement des matriaux ci- mentaires sous impact svre prise en compte du taux de saturation. Ph.D. dissertation, Grenoble Alpes University, France

  3. 3.

    Burlion N, Pijaudier-Cabot G, Dahan N (2001) Experimental analysis of compaction of concrete and mortar. Int J Numer Anal Methods Geomech 25(15):1467–1486

    Google Scholar 

  4. 4.

    Cundall P, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  5. 5.

    Cusatis G, Pelessone D, Mencarelli A (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory. Cem Concr Compos 33(9):881–890

    Google Scholar 

  6. 6.

    Cusatis G, Mencarelli A, Pelessone D, Baylot J (2011) Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation. Cem Concr Compos 33(9):891–905

    Google Scholar 

  7. 7.

    Daudeville L, Malecot Y (2011) Concrete structures under impact. Eur J Environ Civ Eng 15(sup1):101–140

    Google Scholar 

  8. 8.

    Davis RO (1972) Thermodynamic response of Mie–Gruneisen materials at high pressures. Phys kondens Mater 15(3):230–236

    Google Scholar 

  9. 9.

    Donze F, Magnier S, Daudeville L, Mariotti C, Davenne L (1999) Numerical study of compressive behavior of concrete at high strain rates. ASCE J Eng Mech 125(10):31154–1163

    Google Scholar 

  10. 10.

    Frangin E, Marin P, Daudeville L (2006) On the use of combined finite/discrete element method for impacted concrete structures. J Phys IV (Proc) 134:461–466

    Google Scholar 

  11. 11.

    Gabet T (2006) Comportement triaxial du bton sous fortes contraintes: Influence du trajet de chargement. Ph.D. dissertation, Grenoble Alpes University, France

  12. 12.

    Gabet T, Malecot Y, Daudeville L (2008) Triaxial behavior of concrete under high stresses: influence of the loading path on compaction and limit states. Cem Concr Res 38(3):403–412

    Google Scholar 

  13. 13.

    Gran JK, Frew DJ (1997) In-target radial stress measurements from penetration experiments into concrete by ogive-nose steel projects. Int J Impact Eng 19:715–726

    Google Scholar 

  14. 14.

    Hentz S, Donze F, Daudeville L (2004) Identification and validation of a discrete element model for concrete. ASCE J Eng Mech 130(6):709–719

    Google Scholar 

  15. 15.

    Kozicki J, Donze F (2009) YADE OPEN DEM: an open source software using a discrete element method to simulate granular material. Eng Comput 26(7):786–805

    MATH  Google Scholar 

  16. 16.

    Kozicki J, Tejchman J, Mhlhaus HB (2014) Discrete simulations of a triaxial compression test for sand by DEM. Int J Numer Anal Methods Geomech 38(18):1923–1952

    Google Scholar 

  17. 17.

    Lilliu G, van Mier JGM (2003) 3D lattice type fracture model for concrete. Eng Fract Mech 70:927–941

    Google Scholar 

  18. 18.

    Malecot Y, Zingg L, Briffaut M, Baroth J (2019) Influence of free water on concrete triaxial behavior: the effect of porosity. Cem Concr Res 120:2017–216

    Google Scholar 

  19. 19.

    Malecot Y, Daudeville L, Dupray F, Poinard C, Buzaud E (2010) Strength and damage of concrete under high triaxial loading. Eur J Environ Civ Eng 14(6–7):777–803

    Google Scholar 

  20. 20.

    Mariotti C, Perlat JP, Guerin JM (2003) A numerical approach for partially saturated geomaterials under shock. Int J Impact Eng 28(2):717–741

    Google Scholar 

  21. 21.

    Nitka M, Tejchman J (2015) Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granul Matter 17(1):145–164

    Google Scholar 

  22. 22.

    Piotrowska E, Malecot Y, Ke Y (2014) Experimental investigation of the effect of coarse aggregate shape and composition on concrete triaxial behavior. Mech Mater 79:45–57

    Google Scholar 

  23. 23.

    Poinard C, Malecot Y, Daudeville L (2010) Damage of concrete in a very high stress state: experimental investigation. Mater Struct 43(1–2):15–29

    Google Scholar 

  24. 24.

    Poinard C, Piotrowska E, Malecot Y, Daudeville L, Landis E (2012) Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. Eur J Environ Civ Eng 16(1):115–136

    Google Scholar 

  25. 25.

    Pontiroli C, Rouquand A, Mazars J (2010) Prediction concrete behaviour from quasi-static loading to hypervelocity impact. An overview of the PRM model. Eur J Environ Civ Eng 14(6–7):703–727

    Google Scholar 

  26. 26.

    Potapov S, Masurel A, Marin P, Daudeville L (2017) Mixed DEM/FEM modeling of advanced damage in reinforced concrete structures. J Eng Mech 143(2):04016110

    Google Scholar 

  27. 27.

    Potyondy D (2009) Stiffness matrix at a contact between two clumps. Itasca Consulting Group, Inc., Minneapolis, MN

    Google Scholar 

  28. 28.

    Rousseau J, Frangin E, Marin P, Daudeville L (2008) Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach. Comput Concr 5(4):343–358

    Google Scholar 

  29. 29.

    Rossi P, Van Mier JGM, Boulay C, Le Maou F (1992) The dynamic behaviour of concrete: influence of free water. Mater Struct 25(9):509–514

    Google Scholar 

  30. 30.

    Schlangen E, Garboczi E (1997) Fracture simulations of concrete using lattice models: computational aspects. Eng Fract Mech 57(2/3):31332

    Google Scholar 

  31. 31.

    Shiu WJ, Donze F, Daudeville L (2008) Penetration prediction of missiles with different nose shapes by the discrete element numerical approach. Comput Struct 86(21–22):2079–2086

    Google Scholar 

  32. 32.

    Shiu WJ, Donze F, Daudeville L (2008) Compaction process in concrete during missile impact: a DEM analysis. Comput Concr 5(4):329–342

    Google Scholar 

  33. 33.

    Shiu WJ, Donze F, Daudeville L (2009) Influence of the reinforcement on penetration and perforation of concrete targets: a discrete element analysis. Eng Comput 26(1–2):29–45

    MATH  Google Scholar 

  34. 34.

    Smith J, Cusatis G (2016) Numerical analysis of projectile penetration and perforation of plain and fiber reinforced concrete slabs. Int J Numer Anal Methods Geomech 41(3):315–337

    Google Scholar 

  35. 35.

    Suchorzewski J, Tejchman J, Nitka M (2018) Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int J Damage Mech 27(4):453–487

    Google Scholar 

  36. 36.

    Sun X, Wang H, Cheng X, Sheng Y (2020) Effect of pore liquid viscosity on the dynamic compressive properties of concrete. Constr Build Mater 231:117143

    Google Scholar 

  37. 37.

    Vu XH, Malecot Y, Daudeville L (2009) Strain measurements on porous concrete samples for triaxial compression and extension tests under very high confinement. J Strain Anal Eng Des 44(8):633–657

    Google Scholar 

  38. 38.

    Vu XH, Malecot Y, Daudeville L, Buzaud E (2009) Experimental analysis of concrete behavior under high confinement: effect of the saturation ratio. Int J Solids Struct 46(5):1105–1120

    MATH  Google Scholar 

  39. 39.

    Vu XH, Malecot Y, Daudeville L (2011) Effect of coarse aggregate size and cement paste volume on concrete behavior under high triaxial compression loading. Constr Build Mater 25(10):3941–3949

    Google Scholar 

  40. 40.

    Vu XD, Malecot Y, Briffaut M, Daudeville L, Bertrand C (2015) Influence of the saturation ratio on concrete behavior under triaxial compressive loading. Sci Technol Nucl Install. Article ID 976387

  41. 41.

    Wu S, Chen X, Zhou J (2012) Influence of strain rate and water content on mechanical behavior of dam concrete. Constr Build Mater 36:448–457

    Google Scholar 

  42. 42.

    Yankelevsky DZ, Dancygier AN (2001) Uniaxial compressive strength effect on high velocity penetration into thick NSC and HSC targets. In: Symposium ISIEMS

  43. 43.

    Yankelevsky DZ (1997) Local response of concrete slabs to low velocity missile impact. Int J Impact Eng 19(4):331–343

    Google Scholar 

  44. 44.

    Yip M, Li Z, Liao BS, Bolander JE (2003) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140:113–124

    MATH  Google Scholar 

  45. 45.

    Zhou J, Chen X, Wu L, Kan X (2011) Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate. Sadhana 36(3):357

    Google Scholar 

  46. 46.

    Zingg L, Briffaut M, Baroth J, Malecot Y (2016) Influence of cement matrix porosity on the triaxial behaviour of concrete. Cem Concr Res 80:52–59

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by CEA DAM, the Direction of Military Applications of the French Alternative Energies and Atomic Energy Commission. The authors would also like to thank Dr. Christophe Pontiroli for scientific advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurent Daudeville.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benniou, H., Accary, A., Malecot, Y. et al. Discrete element modeling of concrete under high stress level: influence of saturation ratio. Comp. Part. Mech. 8, 157–167 (2021). https://doi.org/10.1007/s40571-020-00318-5

Download citation

Keywords

  • DEM
  • Discrete element model
  • Concrete
  • Saturation ratio
  • Confined compression