Skip to main content
Log in

A material point method for simulation of viscoelastic flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A novel variant of the Material Point Method is proposed to solve flow problems for incompressible viscoelastic fluids. As in the original spirit of the method, material points possess all necessary information about the material constitutive behavior and move with the flow. They are additionally employed as integration points, whose weights are computed as the system evolves in order to ensure exact integration of the discretized conservation equations. The method is shown to achieve quadratic convergence for transient start-up flow of the Oldroyd-B fluid. In addition, we apply the method to flow of a Giesekus fluid in concentric rotating cylinders, and in flow through an abrupt 4:1 contraction, comparing favorably to available analytical, experimental, and simulation results as appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azaiez J, Guenette R, Ait-Kadi A (1996) Entry flow calculations using multi-mode models. J Non-Newton Fluid Mech 66(2–3):271–281

    Article  Google Scholar 

  2. Azaiez J, Guenette R, Ait-Kadi A (1996) Numerical simulation of viscoelastic flows through a planar contraction. J Non-Newton Fluid Mech 62(2–3):253–277

    Article  Google Scholar 

  3. Baiijens F (1998) Mixed finite element method for viscoelastic flow analysis: a review. J Non-Newton Fluid Mech 79:361–385

    Article  Google Scholar 

  4. Bird RB, Armstrong RC, Hassager H (1987) Dynamics of polymeric liquids volume 1: fluid mechanics. Wiley, New York

    Google Scholar 

  5. Chaniotis A, Poulikakos D, Koumoutsakos P (2002) Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys 182(1):67–90

    Article  MATH  Google Scholar 

  6. Coronado OM, Arora D, Behr M, Pasquali M (2007) A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation. J Non-Newton Fluid Mech 147(3):189–199

    Article  MATH  Google Scholar 

  7. Duarte ASR, Miranda AIP, Oliveira PJ (2008) Numerical and analytical modeling of unsteady viscoelastic flows: the start-up and pulsating test case problems. J Non-Newton Fluid Mech 154(2–3):153–169

    Article  MATH  Google Scholar 

  8. Ellero M, Tanner R (2005) SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newton Fluid Mech 132:61–72

    Article  MATH  Google Scholar 

  9. Ellero M, Kroger M, Hess S (2002) Viscoelastic flows studied by smoothed particle hydrodynamics. J Non-Newton Fluid Mech 105:35–51

    Article  MATH  Google Scholar 

  10. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295–324

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng H, Andreev M, Pilyugina E, Schieber J (2016) Smoothed particle hydrodynamics simulation of viscelastic flows with the slip-link model. Mol Syst Des Eng 1:99–108

    Article  Google Scholar 

  12. Gallez X, Halin P, Lielens G, Keunnings R, Legat V (1999) The adaptive lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput Methods Appl Mech Eng 180:345–364

    Article  MathSciNet  MATH  Google Scholar 

  13. Guenette R, Fortin M (1995) A new mixed finite element method for computing viscoelastic flows. J Non-Newton Fluid Mech 60:27–52

    Article  Google Scholar 

  14. Halin P, Lielens G, Keunnings R, Legat V (1998) The lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations. J Non-Newton Fluid Mech 79:387–403

    Article  MATH  Google Scholar 

  15. Hua C, Schieber JD (1996) Application of kinetic theory models in spatiotemporal flows for polymer solutions, liquid crystals and polymer metls using the CONNFFESSIT Approach. Chem Eng Sci 51(9):1473–1485

    Article  Google Scholar 

  16. Hulsen M, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high weissenberg number: stabilized simulations using matrix logarithms. J Non-Newton Fluid Mech 127(1):27–39

    Article  MATH  Google Scholar 

  17. Idelsohn S, Nigro N, Limache A, Onate E (2012) Large time-step explicit integration method for solving porlbmes with dominant convection. Comput Methods Appl Mech Eng 217–220:168–185

    Article  MATH  Google Scholar 

  18. Kane A, Guenette R, Fortin A (2009) A comparison of four implementations of the log-conformation formulation for viscoelastic fluid flows. J Non-Newton Fluid Mech 164(1–3):45–50

    Article  MATH  Google Scholar 

  19. Laso M, Öttinger H (1993) Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach. J Non-Newton Fluid Mech 47:1–20

    Article  MATH  Google Scholar 

  20. Lastiwka M, Quinlan N, Basa M (2005) Adaptive particle distribution for smoothed particle hydrodynamics. Int J Numer Meth Fluids 47:1403–1409

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis R, Ravindran K, Usmani A (1995) Finite element solution of incompressible flows using and explicit segregated approach. Arch Comput Methods Eng 2:69–93

    Article  MathSciNet  Google Scholar 

  22. McKinley G, Pakdel P, Oztekin A (1996) Rheological and geometric scaling of purely elastic flow instabilities. J Non-Newton Fluid Mech 67:19–47

    Article  Google Scholar 

  23. Moresi L, Dufour F, Muhlhaus HB (2003) A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J Comput Phys 184:476–497

    Article  MATH  Google Scholar 

  24. Nithiarasu P (2004) A fully explicit characteristic based split (cbs) scheme for viscoelastic flow calculations. Int J Numer Methods Eng 60(5):949–978

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Neill C, Moresi L, Muller D, Albert R, Dufour F (2006) Ellipsis 3D: a particle-incell finite element hybrid code for modeling mantle convection and lithospheric deformation. Comput Geosci 32:1769–1779

    Article  Google Scholar 

  26. Press W, Flannery B, Teukolsky S, Vetterling W (1986) Numerical recpies: the art of scientific computing, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Quinzani L, Armstrong R, Brown R (1994) Birefringence and laser-doppler velocimetry (ldv) studies of viscoelastic flow-through a planar contraction. J Non-Newton Fluid Mech 52(1):1–36

    Article  Google Scholar 

  28. Ravanchi MT, Mirzazadeh M, Rashidi F (2007) Flow of giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation. Int J Heat and Fluid Flow 28(4:SI):838–845

    Google Scholar 

  29. Shaqfeh E (1996) Purely elastic instabilities in viscometric flows. Annu Rev Fluid Mech 28:129–185

    Article  MathSciNet  Google Scholar 

  30. Sulsky D, Chen Z, Schreyer H (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  MathSciNet  MATH  Google Scholar 

  31. Sulsky D, Zhou SJ, Schreyer H (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252

    Article  MATH  Google Scholar 

  32. Wapperom P, Keunnings R, Legat V (2000) The backward-tracking lagrangian particle method for transient viscoelastic flows. J Non-Newton Fluid Mech 91:273–295

    Article  MATH  Google Scholar 

  33. Waters N, King M (1970) Unsteady flow of an elastico-viscous liquid. Rheol Acta 9(3):343–55

    Article  MATH  Google Scholar 

  34. Xue S, Tanner R, Phan-Thien N (2004) Numerical modelling of transient viscoelastic flows. J Non-Newton Fluid Mech 123(1):33–58

    Article  MATH  Google Scholar 

  35. Yoo J, Choi H (1989) On the steady simple shear flows of the one-mode giesekus fluid. Rheol Acta 28(1):13–24

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge ExxonMobil Research & Engineering for support of and permission to publish this work. The authors also thank Ron Larson (U. Michigan) and Jay Schieber (Illinois Institute of Technology) for helpful discussions and suggestions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Gordon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Research was performed at ExxonMobil Corporate Strategic Research.

Appendix

Appendix

1.1 Analytical solution for Giesekus fluid in Poiseuille flow

The analytical solutions utilized in enforcing consistent velocity and material stress profiles at the entrance of an inflow channel were derived by Yoo et al. and are summarized here. The solutions correspond to a fluid flowing through a channel of height H at an average flow rate of \(\langle v_x \rangle \). The material properties are defined relaxation time \(\lambda \), polymeric viscosity \(\eta _{p}\), and mobility parameter \(\alpha \), and the flow is characterized by a Weissenberg number \(Wi = \frac{\lambda \langle v_{x} \rangle }{H}\). The coordinate y in the expressions is non-dimensionalized by the H. The solutions are

$$\begin{aligned} v_{x}(y)= & {} c_2 \left[ (1-2c_{0}^2) \ln \left( \frac{c_0 + \sqrt{1-\phi ^{2}y^{2}}}{c_0 + c_3}\right) \right. \nonumber \\&\left. +\, c_4\left( \frac{1}{c_0 +\sqrt{1-\phi ^{2}y^{2}}} - \frac{1}{c_0 + c_3} \right) \right] \end{aligned}$$
(39)
$$\begin{aligned} \sigma _{xx}(y)= & {} s_0 \left[ \frac{(1-\alpha )(1 - \sqrt{1 - \phi ^{2}y^{2}}) + \frac{1}{2}\phi ^{2}y^{2}}{c_0 + \sqrt{1 - \phi ^{2}y^{2}}} \right] \end{aligned}$$
(40)
$$\begin{aligned} \sigma _{yy}(y)= & {} \frac{s_0}{2} \left( \sqrt{1 - \phi ^{2}y^{2}} - 1 \right) \end{aligned}$$
(41)
$$\begin{aligned} \sigma _{xy}(y)= & {} -\frac{s_0}{2} \phi y \end{aligned}$$
(42)

The constants \(\phi , c_0, c_2, c_3, c_4\) and \(s_0\) in the above expressions are

$$\begin{aligned} \phi= & {} 2\alpha Wi (-\frac{\partial p}{\partial x})\end{aligned}$$
(43)
$$\begin{aligned} c_0= & {} 2\alpha - 1 \end{aligned}$$
(44)
$$\begin{aligned} c_{2}= & {} \frac{\langle v_{x}\rangle }{\phi Wi} \end{aligned}$$
(45)
$$\begin{aligned} c_{3}= & {} \sqrt{1 - \phi ^{2}} \end{aligned}$$
(46)
$$\begin{aligned} c_{4}= & {} 4\alpha c_{0} (1-\alpha )\end{aligned}$$
(47)
$$\begin{aligned} s_{0}= & {} \frac{\eta _{p}}{\lambda \alpha } \end{aligned}$$
(48)

Full specification of the solution requires solving for the pressure gradient, \(\frac{\partial p}{\partial x}\) (or \(\alpha \)) for a given value of the average flow rate. This is accomplished by solving the nonlinear equation for a given input flow rate,

$$\begin{aligned} Wi \left( 1 - \frac{1}{\langle v_{x} \rangle } \int _{0}^{1} v_{x}(y;\alpha ) \right) = 0 \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, P.A., Liu, F., Meier, H.A. et al. A material point method for simulation of viscoelastic flows. Comp. Part. Mech. 6, 311–325 (2019). https://doi.org/10.1007/s40571-018-0215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0215-6

Keywords

Navigation