Skip to main content
Log in

Dilation angle in bonded particle simulation of rock

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A model that allows micromechanical parameters to soften as a measure of plastic deformation is discussed. In particular, a microdilation angle is involved to help for calibration of macroscopic volumetric deformation. Through biaxial and shear tests numerical simulations, it is shown that macrodilation angle of bonded particle system can be controlled only when small particles are used. The genesis pressure that causes small overlap of particles has an impact on dilation angle as well and can be utilized as a controlling factor to calibrate a bonded particle material for dilation angle and post-peak behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Cundall PA (1971) A computer model for simulating progressive, large scale movement in blocky rock systems. In: Proceedings of the international symposium on rock mechanics, vol 2, pp 129–136

  2. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  3. Rojek J, Onate E, Labra C, Kargl H (2011) Discrete element simulation of rock cutting. Int J Rock Mech Min Sci 48(6):996–1010

    Article  Google Scholar 

  4. Rojek J (2014) Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput Part Mech 1(1):71–84

    Article  Google Scholar 

  5. Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Meth Geomech 37(13):1913–1929

    Article  Google Scholar 

  6. Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Valiullin K, Ring L (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160

    Article  Google Scholar 

  7. Fakhimi A, Lanari M (2014) DEM–SPH simulation of rock blasting. Comput Geotech 55:158–164

    Article  Google Scholar 

  8. Lanari M, Fakhimi A (2015) Numerical study of contributions of shock wave and gas penetration toward induced rock damage during blasting. Comput Part Mech 2(2):197–208

    Article  Google Scholar 

  9. Fakhimi A, Hemami B (2015) Axial splitting of rocks under uniaxial compression. Int J Rock Mech Min Sci 79:124–134

    Article  Google Scholar 

  10. Hemami B, Fakhimi A (2014) Numerical simulation of rock-loading machine interaction. In: ARMA 14-7488, 48th US rock mechanics/geomechanics symposium, Minneapolis, MN, June 1–4

  11. Tarokh A, Kao CS, Fakhimi A, Labuz JF (2016) Insights on surface spalling of rock. Comput Part Mech 3(3):391–405

    Article  Google Scholar 

  12. Tarokh A, Blanksma DJ, Fakhimi A, Labuz JF (2016) Fracture initiation in cavity expansion of rock. Int J Rock Mech Min Sci 85:84–91

    Article  Google Scholar 

  13. Wang M, Feng YT, Pande GN, Chan AHC, Zuo WX (2017) Numerical modelling of fluid-induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method. Comput Geotech 82:134–143

    Article  Google Scholar 

  14. Zhang P, Galindo-Torres SA, Tang H, Jin G, Scheuermann A, Li L (2017) An efficient discrete element lattice Boltzmann model for simulation of particle-fluid, particle-particle interactions. Comput Fluids 147:63–71

    Article  MathSciNet  MATH  Google Scholar 

  15. Damjanac B, Cundall P (2016) Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput Geotech 71:283–294

    Article  Google Scholar 

  16. Zhang Q, Zhang XP (2017) A numerical study on cracking processes in limestone by the b-value analysis of acoustic emissions. Comput Geotech 92:1–10

    Article  Google Scholar 

  17. Han D, Zhang D, Jing H, Yang L, Cui T, Ding Y, Wang Z, Wang Y, Zhang T (2018) DEM-CFD coupling simulation and optimization of an inside-filling air-blowing maize precision seed-metering device. Comput Electron Agric 150:426–438

    Article  Google Scholar 

  18. Bennett KC, Luscher DJ, Buechler MA, Yeager JD (2018) A micromechanical framework and modified self-consistent homogenization scheme for the thermoelasticity of porous bonded-particle assemblies. Int J Solids Struct 139:224–237

    Article  Google Scholar 

  19. Norouzi S, Baghbanan A, Khani A (2013) Investigation of grain size effects on micro/macro-mechanical properties of intact rock using Voronoi element—discrete element method approach. Part Sci Technol 31(5):507–514

    Article  Google Scholar 

  20. Liu Q, Jiang Y, Wu Z, Xu X, Liu Q (2018) Investigation of the rock fragmentation process by a single TBM cutter using a Voronoi element-based numerical manifold method. Rock Mech Rock Eng 51(4):1137–1152

    Article  Google Scholar 

  21. Liu Q, Jiang Y, Wu Z, He J (2018) A Voronoi element based-numerical manifold method (VE-NMM) for investigating micro/macro-mechanical properties of intact rocks. Eng Fract Mech 199:71–85

    Article  Google Scholar 

  22. Liu Q, Jiang Y, Wu Z, Qian Z, Xu X (2018) Numerical modeling of acoustic emission during rock failure process using a Voronoi element based-explicit numerical manifold method. Tunn Undergr Space Technol 79:175–189

    Article  Google Scholar 

  23. He J, Liu Q, Wu Z, Jiang Y (2018) Geothermal-related thermo-elastic fracture analysis by numerical manifold method. Energies 11(6):1380

    Article  Google Scholar 

  24. Peng J, Wong LNY, Teh CI (2017) Effects of grain size-to-particle size ratio on micro-cracking behavior using a bonded-particle grain-based model. Int J Rock Mech Min Sci 100:207–217

    Article  Google Scholar 

  25. Farahmand K, Diederichs MS (2015). A calibrated Synthetic Rock Mass (SRM) model for simulating crack growth in granitic rock considering grain scale heterogeneity of polycrystalline rock. In: 49th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  26. Potyondy DO (2017). Simulating perforation damage with a flat-jointed bonded-particle material. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  27. Dinç Ö, Scholtès L (2018) Discrete analysis of damage and shear banding in argillaceous rocks. Rock Mech Rock Eng 51(5):1521–1538

    Article  Google Scholar 

  28. Liakas S, O’Sullivan C, Saroglou C (2017) Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model. J Rock Mech Geotech Eng 9(4):575–584

    Article  Google Scholar 

  29. Khani A, Baghbanan A, Norouzi S, Hashemolhosseini H (2013) Effects of fracture geometry and stress on the strength of a fractured rock mass. Int J Rock Mech Min Sci 60:345–352

    Article  Google Scholar 

  30. Torkan M, Baghbanan A, Norouzi S, Amrollahi H, Hashemolhosseini H (2017) Evaluating modes I, II, and mixed mode I–II fracture toughnesses of crystalline rocks using discrete element method. Part Sci Technol. https://doi.org/10.1080/02726351.2017.1352635

    Google Scholar 

  31. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  32. Fakhimi A (2004) Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles. Eng Geol 74(1):129–138

    Article  Google Scholar 

  33. Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6(4):301–314

    Article  Google Scholar 

  34. Ding X, Zhang L (2014) A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. Int J Rock Mech Min Sci 69:111–119

    Article  Google Scholar 

  35. Schöpfer MP, Abe S, Childs C, Walsh JJ (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modelling. Int J Rock Mech Min Sci 46(2):250–261

    Article  Google Scholar 

  36. Diederichs MS (2000) Instability of hard rock masses, the role of tensile damage and relaxation. PhD dissertation, University of Waterloo, Canada

  37. Particle flow code in 2 dimensions (1999) Itasca consulting group, Inc, Minneapolis, MN

  38. Cho N, Martin CD, Sego DC, Christiansson R (2004) Modelling dilation in brittle rocks. In: Gulf rocks 2004, the 6th North America rock mechanics symposium (NARMS). American Rock Mechanics Association

  39. Zhao XG, Cai M (2010) A mobilized dilation angle model for rocks. Int J Rock Mech Min Sci 47(3):368–384

    Article  Google Scholar 

  40. Fakhimi A, Riedel JJ, Labuz JF (2006) Shear banding in sandstone: physical and numerical studies. Int J Geomech 6(3):185–194

    Article  Google Scholar 

  41. Norouzi S, Fakhimi A (2017) A micromechanical model for studying the effect of ductility and micro-crack intensity on rock strength characteristics. In: ARMA 17-596, 51st US rock mechanics/geomechanics symposium, San Francisco, CA, June 25–28

  42. Vermeer PA, de Borst R (1988) Non-associated plasticity for soils, concrete and rock. Heron 29(3):1–64

    Google Scholar 

  43. Norouzi S (2017). A micro mechanical model for numerical study of rock dilation and ductility. MS thesis, Department of Mineral Engineering, New Mexico Tech, NM, USA

  44. Fakhimi A, Villegas T (2007) Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech Rock Eng 40(2):193–211

    Article  Google Scholar 

  45. Ivars D, Potyondy DO, Pierce M, Cundall PA (2008) The smooth-joint contact model. In: Proceedings of WCCM8-ECCOMAS

  46. Fakhimi A, Hosseinpour H (2011) Experimental and numerical study of the effect of an oversize particle on the shear strength of mined-rock pile material. Geotech Test J 34(2):131–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fakhimi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhimi, A., Norouzi, S. Dilation angle in bonded particle simulation of rock. Comp. Part. Mech. 6, 195–211 (2019). https://doi.org/10.1007/s40571-018-0208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0208-5

Keywords

Navigation