Skip to main content
Log in

A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic–perfectly plastic constitutive equation and Drucker–Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil’s natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Afshar-Mohajer N, Wu CY, Curtis JS, Gaier JR (2015) Review of dust transport and mitigation technologies in lunar and Martian atmospheres. Adv Space Res 56(6):1222–1241

    Article  Google Scholar 

  2. Afshar-Mohajer N, Wu CY, Moore R, Sorloaica-Hickman N (2014) Design of an electrostatic lunar dust repeller for mitigating dust deposition and evaluation of its removal efficiency. J Aerosol Sci 69:21–31

    Article  Google Scholar 

  3. Afshar-Mohajer N, Wu CY, Damit B, Sorloaica-Hickman N (2011) In: 41st international conference on environmental systems Portland, Oregon

  4. Aplin KL, MacFaden AJ, Bowles NE (2014) Modelling of an asteroid photoelectron sheath and implications for a sample return mission. Planet Space Sci 99:103–111

    Article  Google Scholar 

  5. Berg OE, Richardson FF, Burton H (1973) Lunar ejecta and meteorites experiment. Apollo 17: Preliminary science report. NASA SP-330, Published by NASA, Washington, D.C., 1973, p 16, 330, 16

  6. Birdsall CK (1991) Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans Plasma Sci 19(2):65–85

    Article  Google Scholar 

  7. Walch B, Horanyi M, Robertson S (1995) Charging of dust grains in plasma with energetic electrons. Phys Rev Lett 75(5):838–842

    Article  Google Scholar 

  8. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  Google Scholar 

  9. Chen W-F, Mizuno E (1990) Nonlinear analysis in soil mechanics?: theory and implementation. Elsevier, Amsterdam

    Google Scholar 

  10. Fulk DA (1994) A numerical analysis of smoothed particle hydrodynamics. Ph.D. Thesis Air Force Inst. of Tech., Wright-Patterson AFB, OH

  11. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  Google Scholar 

  12. Han D, Wang P, He X, Lin T, Wang J (2016) A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions. J Comput Phys 321:965–980

    Article  MathSciNet  Google Scholar 

  13. He C (2010) Geotechnical characterization of lunar regolith simulants. Doctoral dissertation. Case Western Reserve University, OH, USA

  14. Hughes ALH, Colwell JE, DeWolfe AW (2008) Electrostatic dust transport on Eros: 3-D simulations of pond formation. Icarus 195(2):630–648

    Article  Google Scholar 

  15. Kawamoto H, Uchiyama M, Cooper BL, McKay DS (2011) Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave. J Electrost 69(4):370–379

    Article  Google Scholar 

  16. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics. J Comput Phys 109(1):67–75

    Article  Google Scholar 

  17. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    MATH  Google Scholar 

  18. Liu G, Marshall JS, Li SQ, Yao Q (2010) Discrete-element method for particle capture by a body in an electrostatic field. Int J Numer Methods Eng 84:1589–1612

    Article  MathSciNet  Google Scholar 

  19. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  Google Scholar 

  20. Liu MB, Liu GR, Zong Z (2008) An overview on smoothed particle hydrodynamics. Int J Comput Methods 5(1):135–188

    Article  MathSciNet  Google Scholar 

  21. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013

    Article  Google Scholar 

  22. Mao Z, Di B, Zhang J (2013) Theoretical simulation of electrostatic levitation of lunar dust. Appl Math Mech 34(4):336–344

    Google Scholar 

  23. Mao Z, Liu GR, Dong X (2017) A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Comput Geotech 92:77–95

    Article  Google Scholar 

  24. Mao Z, Liu GR (2018) A Lagrangian gradient smoothing method for solid-flow problems using simplicial mesh. Int J Numer Methods Eng 113:858–890

    Article  MathSciNet  Google Scholar 

  25. Monaghan JJ (1985) Artificial viscosity for particle methods J.J. Monaghan and H. Pongracic. Appl Numer Math 1:187–194

    Article  Google Scholar 

  26. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  27. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MathSciNet  Google Scholar 

  28. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  Google Scholar 

  29. Pines V, Zlatkowski M, Chait A (2011) Lofted charged dust distribution above the Moon surface. Planet Space Sci 59(14):1795–1803

    Article  Google Scholar 

  30. Poppe AR, Piquette M, Likhanskii A, Horányi M (2012) The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport. Icarus 221(1):135–146

    Article  Google Scholar 

  31. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    Article  MathSciNet  Google Scholar 

  32. Rennilson JJ, Criswell DR (1974) Surveyor observations of lunar horizon-glow. Moon 10(2):121–142

    Article  Google Scholar 

  33. Robertson S, Gulbis AAS, Colwell J, Horányi M (2003) Dust grain charging and levitation in a weakly collisional sheath. Physics of Plasmas 10(10):3874–3880

    Article  Google Scholar 

  34. Sickafoose AA, Colwell JE, Horányi M, Robertson S (2002) Experimental levitation of dust grains in a plasma sheath. J Geophys Res Space Phys 107(A11):1408

    Article  Google Scholar 

  35. Sickafoose AA, Colwell JE, Horányi M, Robertson S (2000) Photoelectric charging of dust particles in vacuum. Phys Rev Lett 84(26):6034–6037

    Article  Google Scholar 

  36. Singer SF, Walker EH (1962) Electrostatic dust transport on the lunar surface. Icarus 1(1–6):112–120

    Article  Google Scholar 

  37. Stubbs TJ, Vondrak RR, Farrell WM (2006) A dynamic fountain model for lunar dust. Adv Space Res 37(1):59–66

    Article  Google Scholar 

  38. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134

    Article  MathSciNet  Google Scholar 

  39. Wang X, Horányi M, Robertson S (2009) Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow. J Geophys Res Space Phys 114(5):2–7

    Google Scholar 

  40. Wang X, Horányi M, Robertson S (2011) Dust transport near electron beam impact and shadow boundaries. Planet Space Sci 59(14):1791–1794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zirui Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Liu, G.R. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface. Comp. Part. Mech. 5, 539–551 (2018). https://doi.org/10.1007/s40571-018-0189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0189-4

Keywords

Navigation