Skip to main content
Log in

A unified numerical framework for rigid and compliant granular materials

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A numerical framework for the simulation of granular materials composed of mixed rigid and compliant grains is presented in this paper. This approach is based on a multibody meshfree technique, coupled in a very natural way with classic concepts from the discrete element method. The equations of motion (for the rigid grains) and of continuum mechanics (for the compliant ones) are solved using an adaptive explicit scheme, in fully dynamic conditions. The parallelization strategy is described and tested on an illustrative simulation involving both kinds of grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  2. Azema E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41:729–741

    Article  Google Scholar 

  3. Mollon G, Richefeu V, Villard P, Daudon D (2015) Discrete modelling of rock avalanches: sensitivity to block and slope geometries. Granul Matter 17(5):645–666

    Article  Google Scholar 

  4. Stahl M, Konietzky H (2011) Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul Matter 13:417–428

    Article  Google Scholar 

  5. Mollon G, Zhao J (2013) Characterization of fluctuations in granular hopper flow. Granul Matter 15(6):827–840

    Article  Google Scholar 

  6. Herbst JA, Potapov AV (2004) Making a discrete grain breakage model practical for comminution equipment performance simulation. Powder Technol 143:144–150

    Article  Google Scholar 

  7. Zhao J, Shan T (2013) Coupled CFD-DEM simulation of fluid–particle interaction in geomechanics. Powder Technol 239:248–258

    Article  Google Scholar 

  8. Richard D, Iordanof I, Renouf M, Berthier Y (2008) Thermal study of the dry sliding contact with third-body presence. ASME J Tribol 130(3):031404

    Article  Google Scholar 

  9. O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective. Int J Geomech 11(6):449–464

    Article  Google Scholar 

  10. Darve F, Duriez J, Wan R (2016) DEM modelling in geomechanics: some recent breakthroughs. In: Proceedings of the 7th international conference on discrete element method, pp 3–12

  11. Cagnoli B, Piersanti A (2015) Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete element modeling of flows of angular fragments. J Geophys Res Solid Earth 120(4):2350–2366

    Article  Google Scholar 

  12. Tijskens E, Ramon H, De Baerdemaeker J (2003) Discrete element modelling for process simulation in agriculture. J Sound Vib 66:493–514

    Article  Google Scholar 

  13. Ouhbi N, Voivret C, Perrin G, Roux JN (2016) Railway ballast: grain shape characterization to study its influence on the mechanical behaviour. Procedia Eng 143:1120–1127

    Article  Google Scholar 

  14. Fillot N, Iordanof I, Berthier Y (2004) A granular dynamic model for the degradation of material. ASME J Tribol 126(3):606–14

    Article  Google Scholar 

  15. Mollon G (2015) A numerical framework for discrete modelling of friction and wear using Voronoi polyhedrons. Tribol Int 90:343–355

    Article  Google Scholar 

  16. Richards K, Bithell M, Dove MT, Hodge RA (2004) Discrete-element modelling: methods and applications in the environmental sciences. Philos Trans R Soc A Math Phys Eng Sci 362(1822):1797–1816

    Article  MathSciNet  Google Scholar 

  17. Da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plans shear flows. Phys Rev E 72:021309

    Article  Google Scholar 

  18. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  MathSciNet  Google Scholar 

  19. Gethin DT, Lewis RW, Ransing RS (2003) A discrete deformable element approach for the compaction of powder systems. Model Simul Mater Sci Eng 11:101–114

    Article  Google Scholar 

  20. Mirea DA, Trunfio-Sfarghiu A-M, Matei CI, Munteanu B, Piednoir A, Rieu JP, Blanchin MG, Berthier Y (2013) Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol Int 59:302–311

    Article  Google Scholar 

  21. Duvernois V, Marsden AL, Shadden SC (2013) Lagrangian analysis of hemodynamics data from FSI simulation. Int J Numer Methods Biomed Eng 29:445–461

    Article  MathSciNet  Google Scholar 

  22. Descartes S, Saulot A, Godeaux C, Bondeux S, Dayot C, Berthier Y (2011) Wheel flange/rail gauge corner contact lubrication: tribological investigations. Wear 271:54–61

    Article  Google Scholar 

  23. Zhang J (2009) A study of composite particles by multi-particle finite element method. Compos Sci Technol 69:2048–2053

    Article  Google Scholar 

  24. Harthong B, Jerier J-F, Richefeu V, Chareyre B, Doremus P, Imbault D, Donzé F-V (2012) Contact impingement in packings of elastic–plastic spheres, application to powder compaction. Int J Mech Sci 61:32–43

    Article  Google Scholar 

  25. Gustafsson G, Haggblad H-A, Jonsen P (2013) Multi-particle finite element modelling of the compression of iron pellets with statistically distributed geometric and material data. Powder Technol 239:231–238

    Article  Google Scholar 

  26. Mollon G (2016) A multibody meshfree strategy for the simulation of highly deformable granular materials. Int J Numer Methods Eng 108(12):1477–1497

    Article  MathSciNet  Google Scholar 

  27. Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430

    Article  MathSciNet  Google Scholar 

  28. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  Google Scholar 

  29. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  Google Scholar 

  30. Ferellec J-F, McDowell G (2010) A method to model realistic particle shape and inertia in DEM. Granul Matter 12:459–467

    Article  Google Scholar 

  31. Cohen J, Lin MC, Manocha D, Ponamgi MK (1995) I-COLLIDE: an interactive and exact collision detection system for large scale environments. In: ACM interactive 3D graphics symposium, Monterey, USA

  32. Mollon G, Zhao J (2012) Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul Matter 14:621–638

    Article  Google Scholar 

  33. Mollon G, Zhao J (2014) 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput Methods Appl Mech Eng 279:46–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mollon.

Ethics declarations

Conflict of interest

The author acknowledges that this study contains original material, as a result of a purely academic study without any kind of private funding or conflict of interest. Its publication has been approved tacitly by the responsible authorities at the institute where the work has been carried out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollon, G. A unified numerical framework for rigid and compliant granular materials. Comp. Part. Mech. 5, 517–527 (2018). https://doi.org/10.1007/s40571-018-0187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0187-6

Keywords

Navigation