Discrete element modeling of free-standing wire-reinforced jammed granular columns

  • Pavel S. Iliev
  • Falk K. Wittel
  • Hans J. Herrmann


The use of fiber reinforcement in granular media is known to increase the cohesion and therefore the strength of the material. However, a new approach, based on layer-wise deployment of predetermined patterns of the fiber reinforcement has led self-confining and free-standing jammed structures to become viable. We have developed a novel model to simulate fiber-reinforced granular materials, which takes into account irregular particles and wire elasticity and apply it to study the stability of unconfined jammed granular columns.


Granular matter Fiber Discrete element method Friction Polyhedral particles Jamming 



We acknowledge financial support from the ETH Research Grant “Robotic Fabrication of Jammed Architectural Structures” ETHIIRA Grant No. ETH-04 14-2 as well as from the ERC Advanced grant number FP7-319968 FlowCCS of the European Research Council. We also want to acknowledge the group of Gramazio/Kohler for the support and for the fruitful discussions, as well as Petrus Aejmelaeus-Lindström for valuable insides and Gergana Rusenova for helping with the experiments.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

40571_2018_186_MOESM1_ESM.avi (16.7 mb)
Supplementary material 1 (avi 17125 KB)
40571_2018_186_MOESM2_ESM.avi (48.2 mb)
Supplementary material 2 (avi 49378 KB)


  1. 1.
    Aejmelaeus-Lindström P, Willmann J, Tibbits S, Gramazio F, Kohler M (2016) Jammed architectural structures: towards large-scale reversible construction. Granul Matter 18(2):28CrossRefGoogle Scholar
  2. 2.
    Al-Refeai TO (1991) Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotext Geomembr 10(4):319–333CrossRefGoogle Scholar
  3. 3.
    Alonso-Marroquín F (2008) Spheropolygons: a new method to simulate conservative and dissipative interactions between 2d complex-shaped rigid bodies. Europhys Lett 83(1):14,001CrossRefGoogle Scholar
  4. 4.
    Azéma E, Radjaï F, Peyroux R, Richefeu V, Saussine G (2008) Short-time dynamics of a packing of polyhedral grains under horizontal vibrations. Eur Phys J E 26(3):327–335CrossRefGoogle Scholar
  5. 5.
    Azéma E, Radjaï F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41(6):729–741CrossRefGoogle Scholar
  6. 6.
    Azéma E, Radjaï F, Dubois F (2013) Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys Rev E 87(062):203Google Scholar
  7. 7.
    Bertrand D, Nicot F, Gotteland P, Lambert S (2008) Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can Geotech J 45(8):1104–1117CrossRefGoogle Scholar
  8. 8.
    Brendel L, Unger T, Wolf DE (2005) Contact dynamics for beginners. Wiley, Hoboken, pp 325–343Google Scholar
  9. 9.
    Chareyre B, Villard P (2005) Dynamic spar elements and discrete element methods in two dimensions for the modeling of soil-inclusion problems. J Eng Mech 131(7):689–698CrossRefGoogle Scholar
  10. 10.
    Cundall P (1988) Formulation of a three-dimensional distinct element model part 1. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech 25(3):107–116CrossRefGoogle Scholar
  11. 11.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotech 29(1):47–65CrossRefGoogle Scholar
  12. 12.
    Eberly D (1999) Distance between two line segments in 3D. Accessed 24 Nov 2017
  13. 13.
    Effeindzourou A, Thoeni K, Giacomini A, Wendeler C (2017) Efficient discrete modelling of composite structures for rockfall protection. Comput Geotech 87(Supplement C):99–114CrossRefGoogle Scholar
  14. 14.
    Fauconneau M, Wittel FK, Herrmann HJ (2016) Continuous wire reinforcement for jammed granular architecture. Granul Matter 18(2):27CrossRefGoogle Scholar
  15. 15.
    Ferellec J, McDowell G (2012) Modelling of ballastgeogrid interaction using the discrete-element method. Geosynth Int 19(6):470–479CrossRefGoogle Scholar
  16. 16.
    Galindo-Torres SA, Pedroso DM (2010) Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys Rev E 81(061):303Google Scholar
  17. 17.
    Galindo-Torres SA, Muñoz JD, Alonso-Marroquín F (2010) Minkowski–Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys Rev E 82(056):713Google Scholar
  18. 18.
    Gough B (2009) GNU scientific library reference manual, 3rd edn. Network Theory Ltd. Accessed 24 Nov 2017
  19. 19.
    Gray DH, Ohashi H (1983) Mechanics of fiber reinforcement in sand. J Geotech Eng 109(3):335–353CrossRefGoogle Scholar
  20. 20.
    Hert S, Schirra S (2017) 3D convex hulls. CGAL user and reference manual. CGAL editorial board. Accessed 24 Nov 2017
  21. 21.
    Ibraim E, Fourmont S (2007) Behaviour of sand reinforced with fibres. Springer, Netherlands, pp 807–818Google Scholar
  22. 22.
    Keller S, Jaeger H (2016) Aleatory architectures. Granul Matter 18(2):29CrossRefGoogle Scholar
  23. 23.
    Langston P, Kennedy AR, Constantin H (2015) Discrete element modelling of flexible fibre packing. Comput Mater Sci Part A 96:108–116CrossRefGoogle Scholar
  24. 24.
    Laniel R, Alart P, Pagano S (2008) Discrete element investigations of wire-reinforced geomaterial in a three-dimensional modeling. Comput Mech 42(1):67–76CrossRefMATHGoogle Scholar
  25. 25.
    Laniel R, Alart P, Pagano S (2009) From discrete to continuous numerical identification of a geomaterial with an internal length. Comput Methods Appl Mech Eng 199(14):113–122CrossRefMATHGoogle Scholar
  26. 26.
    Lobo-Guerrero S, Vallejo LE (2010) Fibre-reinforcement of granular materials: DEM visualisation and analysis. Geomech Geoeng 5(2):79–89CrossRefGoogle Scholar
  27. 27.
    Luding S (2008) Introduction to discrete element methods. Eur J Environ Civ Eng 12(7–8):785–826CrossRefGoogle Scholar
  28. 28.
    Maeda K, Ibraim E (2008) DEM analysis of 2D fibre-reinforced granular soils, vol 2. Academic Press, London, pp 623–628Google Scholar
  29. 29.
    Maher MH, Gray DH (1990) Static response of sands reinforced with randomly distributed fibers. J Geotech Eng 116(11):1661–1677CrossRefGoogle Scholar
  30. 30.
    Michalowski RL, Zhao A (1996) Failure of fiber-reinforced granular soils. J Geotech Eng 122(3):226–234CrossRefGoogle Scholar
  31. 31.
    Moreau JJ (1993) New computation methods in granular dynamics. In: Thornton C (ed) Powders and Grains 93, Balkema, Rotterdam, p 227Google Scholar
  32. 32.
    Nezami EG, Hashash YM, Zhao D, Ghaboussi J (2004) A fast contact detection algorithm for 3-d discrete element method. Comput Geotech 31(7):575–587CrossRefGoogle Scholar
  33. 33.
    Nezami EG, Hashash YM, Zhao D, Ghaboussi J (2006) Shortest link method for contact detection in discrete element method. Int J Numer Anal Methods Geomech 30(8):783–801CrossRefMATHGoogle Scholar
  34. 34.
    Ngo NT, Indraratna B, Rujikiatkamjorn C (2016) Modelling geogrid-reinforced railway ballast using the discrete element method. Transp Geotech 8(Supplement C):86–102CrossRefGoogle Scholar
  35. 35.
    Nozoe S, Kaneko K, Hashizume Y (2013) Optimum mixture design of granular materials reinforced by short fiber. AIP Conf Proc 1542(1):305–308CrossRefGoogle Scholar
  36. 36.
    Pournin L, Weber M, Tsukahara M, Ferrez JA, Ramaioli M, Liebling TM (2005) Three-dimensional distinct element simulation of spherocylinder crystallization. Granul Matter 7(2):119–126CrossRefMATHGoogle Scholar
  37. 37.
    Radjaï F, Dubois F (2011) Discrete numerical modeling of ganular materials. Wiley, HobokenGoogle Scholar
  38. 38.
    Stoop N, Wittel FK, Herrmann HJ (2008) Morphological phases of crumpled wire. Phys Rev Lett 101:094,101CrossRefGoogle Scholar
  39. 39.
    Sunday D (2001) Distance between lines and segments with their closest point of approach. Accessed 24 Nov 2017
  40. 40.
    Tang CS, Wang DY, Cui YJ, Li BSJ (2016) Tensile strength of fiber-reinforced soil. J Mater Civ Eng 28(7):04016,031CrossRefGoogle Scholar
  41. 41.
    Vetter R, Wittel FK, Stoop N, Herrmann HJ (2013) Finite element simulation of dense wire packings. Eur J Mech A Solids 37:160–171MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Villard P, Chareyre B (2004) Design methods for geosynthetic anchor trenches on the basis of true scale experiments and discrete element modelling. Can Geotech J 41(6):1193–1205CrossRefGoogle Scholar

Copyright information

© OWZ 2018

Authors and Affiliations

  • Pavel S. Iliev
    • 1
  • Falk K. Wittel
    • 1
  • Hans J. Herrmann
    • 1
  1. 1.Institute for Building MaterialsETH ZurichZurichSwitzerland

Personalised recommendations