Skip to main content
Log in

Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87(1–2):253–265

    Article  MATH  Google Scholar 

  2. Benz W, Cameron A, Melosh H (1989) The origin of the moon and the single-impact hypothesis iii. Icarus 81(1):113–131

    Article  Google Scholar 

  3. Bonet J, Kulasegaram S, Rodriguez-Paz M, Profit M (2004) Variational formulation for the smooth particle hydrodynamics (sph) simulation of fluid and solid problems. Comput Methods Appl Mech Eng 193(12–14):1245–1256. doi:10.1016/j.cma.2003.12.018 Meshfree Methods: Recent Advances and New Applications

    Article  MATH  Google Scholar 

  4. Bui H, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  5. Cleary P, Das R (2008) The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on theoretical, computational and modelling aspects of inelastic media. Springer, pp 287–296

  6. Cleary P, Monaghan J (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264

    Article  MathSciNet  MATH  Google Scholar 

  7. Cleary P, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362(1822):2003

    Article  MathSciNet  MATH  Google Scholar 

  8. Damjanac B, Detournay C, Cundall PA (2015) Application of particle and lattice codes to simulation of hydraulic fracturing. Comput Part Mech. doi:10.1007/s40571-015-0085-0

  9. Das R, Cleary P (2010) Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theor Appl Fract Mech 53(1):47–60. doi:10.1016/j.tafmec.2009.12.004

    Article  Google Scholar 

  10. Das R, Cleary PW (2014) Evaluation of accuracy and stability of the classical sph method under uniaxial compression. J Sci Comput 64(3):858–897. doi:10.1007/s10915-014-9948-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Douillet-Grellier T, Jones BD, Pramanik R, Pan K, Albaiz A, Williams JR (2016) Mixed-mode fracture modeling with smoothed particle hydrodynamics. Comput Geotech 79:73–85. doi:10.1016/j.compgeo.2016.06.002. http://www.sciencedirect.com/science/article/pii/S0266352X1630129X

  12. Douillet-Grellier T, Pramanik R, Pan K, Albaiz A, Jones BD, Pourpak H, Williams JR (2016) Mesh-free numerical simulation of pressure-driven fractures in brittle rocks. SPE Hydraul Fract Technol Conf. doi:10.2118/179138-MS

  13. Fett T (1982) Crack opening displacement of a penny-shaped crack in an infinite body loaded by internal pressure over a circular area. Int J Fract 20(4):R135–R138. doi:10.1007/BF01130619

    Article  Google Scholar 

  14. Gingold R, Monaghan J (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  15. Gray J, Monaghan J, Swift R (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662

    Article  MATH  Google Scholar 

  16. Green AE, Sneddon IN (1950) The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid. Math Proc Camb Philos Soc 46:159–163. doi:10.1017/S0305004100025585

    Article  MathSciNet  MATH  Google Scholar 

  17. Hondros G (1959) The evaluation of poisson’s ratio and the modulus of materials of a low tensile resistance by the brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268

    Google Scholar 

  18. Johnson GR, Stryk RA, Beissel SR (1996) SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139(1–4):347–373. doi:10.1016/S0045-7825(96)01089-4

    Article  MATH  Google Scholar 

  19. Libersky L, Petschek A, Carney T, Hipp J, Allahdadi F (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    Article  MATH  Google Scholar 

  20. Libersky LD, Petschek AG (1991) Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. In: Proceedings of the Next Free-Lagrange Conference Held at Jackson Lake Lodge, Moran, WY, USA 3–7 June 1990, chap. Smooth particle hydrodynamics with strength of materials. Springer, Berlin, pp 248–257. doi:10.1007/3-540-54960-9

  21. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76. doi:10.1007/s11831-010-9040-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma G, Wang X, Ren F (2011) Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method. Int J Rock Mech Min Sci 48(3):353–363. doi:10.1016/j.ijrmms.2011.02.001

  23. Monaghan J (1992) Smoothed particle hydrodynamics. Annu, Rev. Astron Astrophys 30:543–574

    Article  Google Scholar 

  24. Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–399

    Article  MATH  Google Scholar 

  25. Monaghan J, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87(1–2):225–235

    Article  MATH  Google Scholar 

  26. Morris J, Fox P, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  27. Morris J, Monaghan J (1997) A switch to reduce SPH viscosity. J Comput Phys 136(1):41–50

    Article  MathSciNet  MATH  Google Scholar 

  28. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353. doi:10.1002/1097-0363(20000615)33:3<333:AID-FLD11>3.0.CO;2-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan K, IJzermans RHA, Jones BD, Thyagarajan A, Beest BWH, Williams JR (2015) Application of the sph method to solitary wave impact on an offshore platform. Comput Part Mech 1–12. doi:10.1007/s40571-015-0069-0

  30. Pramanik R, Deb D (2013) Failure process of brittle rock using smoothed particle hydrodynamics. J Eng Mech 139(11):1551–1565. doi:10.1061/(ASCE)EM.1943-7889.0000592

    Article  Google Scholar 

  31. Pramanik R, Deb D (2015) Sph procedures for modeling multiple intersecting discontinuities in geomaterial. Int J Numer Anal Methods Geomech 39(4):343–367. doi:10.1002/nag.2311

    Article  Google Scholar 

  32. Randles P, Libersky L (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408

    Article  MathSciNet  MATH  Google Scholar 

  33. Raymond S, Lemiale V, Ibrahim R, Lau R (2014) A meshfree study of the kalthoff Winkler experiment in 3d at room and low temperatures under dynamic loading using viscoplastic modelling. Eng Anal Bound Elem 42:20–25. doi:10.1016/j.enganabound.2013.10.015 Advances on Meshfree and other Mesh reduction methods

    Article  MathSciNet  MATH  Google Scholar 

  34. Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond Math Phys Eng Sci 187(1009):229–260. doi:10.1098/rspa.1946.0077

    Article  MathSciNet  Google Scholar 

  35. Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134

    Article  MathSciNet  MATH  Google Scholar 

  36. Tartakovsky AM, Trask N, Pan K, Jones B, Pan W, Williams JR (2015) Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Comput Geosci 1–28. doi:10.1007/s10596-015-9468-9

  37. Vidal Y, Bonet J, Huerta A (2007) Stabilized updated lagrangian corrected sph for explicit dynamic problems. Int J Numer Methods Eng 69(13):2687–2710. doi:10.1002/nme.1859

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Total E&P for its scientific and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Douillet-Grellier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douillet-Grellier, T., Pramanik, R., Pan, K. et al. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation. Comp. Part. Mech. 4, 451–471 (2017). https://doi.org/10.1007/s40571-016-0137-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0137-0

Keywords

Navigation