Information Technology & Tourism

, Volume 18, Issue 1–4, pp 29–42 | Cite as

Strategic visitor flows and destination management organization

  • Rodolfo Baggio
  • Miriam Scaglione
Original Research


The relevance of the monitoring of visitor flows (VF), namely the general or aggregate patterns of travellers’ movements in a given area is twofold. On the one hand, they are relevant for the spatial description of travel networks. On the other hand, VF patterns are challenging traditional organization of destination management (DM) and are becoming a strategic tool. VFs are useful for reshaping the DM organization’s governance model from a static-central model to a dynamic network. The aim of this research is to estimate SVF using the data movement recorded by a test carried out with an anonymised and highly aggregated mobile phone data set, provided by Swisscom—the major Swiss mobile company. This research sheds some light on the relevance of VF in the understanding and improving of DM organization governance. Furthermore, it provides evidence of the existence of SVF at different levels of geographical scale obtained by network analysis techniques.


Spatial movement patterns of travellers Network models Mobile phone data Third Generation DMO 



The research was supported by the grant SX46769 “Travel behaviour” by the University of Applied Sciences and Arts Western Switzerland Valais. Many thanks to Pascal Favre research officer and Simone Dimitriou at the Institute of Tourism (HES-SO Valais-Wallis) and Swisscom. The authors wish to thank Mr Thomas Steiner CEO of the Union fribourgeoise du tourisme and the anonymous referees for their useful comments. A first version of this paper was presented at Enter 2017 in Rome and the authors thank the participants for their comments and feedback.


  1. Ahas R, Aasa A, Roose A, Mark Ü, Silm S (2008) Evaluating passive mobile positioning data for tourism surveys: an Estonian case study. Tour Manag 29(3):469–486CrossRefGoogle Scholar
  2. Asgari F, Gauthier V, Becker M (2013) A survey on human mobility and its applications (arXiv preprint 1307.0814). Retrieved June 2017 from
  3. Baggio R (2016a) Big data, business intelligence and tourism: a brief analysis of the literature. In: Fuchs M, Lexhagen M, Höpken W (eds) IFITT workshop on big data and business intelligence in the travel and tourism domain. European Tourism Research Institute (ETOUR), Mid-Sweden University, ÖstersundGoogle Scholar
  4. Baggio R (2016b) Improving tourism statistics: merging official records with big data. Paper presented at the IFITT workshop on big data and business intelligence in the travel and tourism domain. European Tourism Research Institute (ETOUR), Mid-Sweden University, ÖstersundGoogle Scholar
  5. Baggio R, Klobas J (2017) Quantitative research methods in tourism: a handbook, 2nd edn. Channel View Publications, BristolCrossRefGoogle Scholar
  6. Baggio R, Scaglione M (2017) Strategic visitor flows (SVF) analysis using mobile data Information and Communication Technologies in Tourism 2017. In: Proceedings of the International Conference in Rome, Springer International Publishing, pp 145–158Google Scholar
  7. Baggio R, Scott N, Cooper C (2010) Network science: a review focused on tourism. Ann Tour Res 37(3):802–827CrossRefGoogle Scholar
  8. Barabási AL (2016) Network science. Cambridge University Press, CambridgeGoogle Scholar
  9. Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connections 21(2):47–57Google Scholar
  10. Beritelli P, Bieger T, Laesser C (2007) Destination governance: using corporate governance theories as a foundation for effective destination management. J Travel Res 46(1):96–107CrossRefGoogle Scholar
  11. Beritelli P, Bieger T, Laesser C (2014) The new frontiers of destination management: applying variable geometry as a function-based approach. J Travel Res 53(4):403–417CrossRefGoogle Scholar
  12. Beritelli P, Reinhold S, Laesser C, Bieger T (2015) The St. Gallen model for destination management. IMP-HSG, St.GallenGoogle Scholar
  13. Birenboim A, Anton-Clavé S, Russo AP, Shoval N (2013) Temporal activity patterns of theme park visitors. Tour Geogr 15(4):601–619CrossRefGoogle Scholar
  14. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRefGoogle Scholar
  15. Broder AZ, Kumar SR, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener JL (2000) Graph structure in the web. Comput Netw 33(1):309–320CrossRefGoogle Scholar
  16. Castells M (1989) The informational city information technology, economic restructuring, and the urban-regional process. Basil Blackwell, OxfordGoogle Scholar
  17. Castells M (2001) The internet galaxy: reflections on the internet, business, and society. Oxford University Press, OxfordCrossRefGoogle Scholar
  18. Clauset A, Shalizi CR, Newman MEJ (2009) Power–law distributions in empirical data. SIAM Rev 51(4):661–703CrossRefGoogle Scholar
  19. Dredge D (1999) Destination place planning and design. Ann Tour Res 26(4):772–791CrossRefGoogle Scholar
  20. Eurostat (2013) Feasibility study on the use of mobile positioning data for tourism statistics. Retrieved June 2017 from
  21. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174CrossRefGoogle Scholar
  22. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44CrossRefGoogle Scholar
  23. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453:779–782CrossRefGoogle Scholar
  24. Gunn CA (1994) Tourism planning basics, concepts, cases, 3rd edn. Taylor & Francis, WashingtonGoogle Scholar
  25. Hagberg AA, Schult DA, Swart P (2008) Exploring network structure, dynamics, and function using NetworkX. Paper presented at the Proceedings of the 7th Python in Science Conferences (SciPy 2008), PasadenaGoogle Scholar
  26. Hwang Y-H, Gretzel U, Fesenmaier DR (2006) Multicity trip patterns: tourists to the United States. Ann Tour Res 33(4):1057–1078CrossRefGoogle Scholar
  27. Kádár B, Gede M (2013) Where do tourists go? Visualizing and analysing the spatial distribution of geotagged photography. Cartogr Int J Geogr Inform Geovis 48(2):78–88Google Scholar
  28. Kim SI, Fesenmaier DR (1990) Evaluating spatial structure effects in recreation travel. Leis Sci 12(4):367–381CrossRefGoogle Scholar
  29. Lantz B (2013) The large sample size fallacy. Scand J Caring Sci 27(2):487–492CrossRefGoogle Scholar
  30. Leiper N (1989) Main destination ratios. Ann Tour Res 16(4):530–541CrossRefGoogle Scholar
  31. Leiper N (1990) Tourist attraction systems. Ann Tour Res 17(3):367–384CrossRefGoogle Scholar
  32. Lew A, McKercher B (2006) Modeling tourist movements: a local destination analysis. Ann Tour Res 33(2):403–423CrossRefGoogle Scholar
  33. Lue C-C, Crompton JL, Fesenmaier DR (1993) Conceptualization of multi-destination pleasure trips. Ann Tour Res 20(2):289–301CrossRefGoogle Scholar
  34. Newman MEJ (2011) Networks: an introduction. Oxford University Press, OxfordGoogle Scholar
  35. Orellana D, Bregt AK, Ligtenberg A, Wachowicz M (2012) Exploring visitor movement patterns in natural recreational areas. Tour Manag 33(3):672–682CrossRefGoogle Scholar
  36. Pan B, Fesenmaier DR (2006) Online information search: vacation planning process. Ann Tour Res 33(3):809–832CrossRefGoogle Scholar
  37. Reinhold S, Laesser C, Beritelli P (2015) 2014 St. Gallen Consensus on destination management. J Destin Mark Manag 4(2):137–142Google Scholar
  38. Ricciato F, Widhalm P, Craglia M, Pantisano F (2015) Estimating population density distribution from network-based mobile phone data. European Commission Joint Research Centre Institute for Environment and Sustainability, LuxembourgGoogle Scholar
  39. Scaglione M, Perruchoud-Massy M-F (2013) The use of indirect indicators to estimate a destination’s visitor counts. Transfert 1:40–65Google Scholar
  40. Scaglione M, Giovannetti E, Hamoudia M (2015) The diffusion of mobile social networking: exploring adoption externalities in four G7 countries. Int J Forecast 31:1159–1170CrossRefGoogle Scholar
  41. Scaglione M, Baggio R, Favre P, Trabichet J-P (2016) Using mobile data to monitor tourism flows-advances and limits. Paper presented at the 3rd Advances in Destination Management, Vail Marriott Mountain ResortGoogle Scholar
  42. Shoval N, Isaacson M (2007) Tracking tourists in the digital age. Ann Tour Res 34(1):141–159CrossRefGoogle Scholar
  43. Steiner T, Baggio R, Scaglione M, Favre P (2016) Implementing lean destination management with strategic visitor flow (SVF) analysis. Paper presented at the AIEST International 2016 Conference, MaltaGoogle Scholar
  44. Stewart SI, Vogt CA (1997) Multi-destination trip patterns. Ann Tour Res 24(2):458–461CrossRefGoogle Scholar
  45. Stienmetz JL, Fesenmaier DR (2013) Traveling the network: a proposal for destination performance metrics. Int J Tour Sci 13(2):57–75Google Scholar
  46. Union fribourgeoise du tourisme (2015) Be my guest. Retrieved June 2017 from
  47. Vu HQ, Li G, Law R, Ye BH (2015) Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tour Manag 46:222–232CrossRefGoogle Scholar
  48. Wang Y, Fesenmaier DR (2004) Modeling participation in an online travel community. J Travel Res 42(3):261–270CrossRefGoogle Scholar
  49. Wang Y, Xiang Z (2007) Toward a theoretical framework of collaborative destination marketing. J Travel Res 46(1):75–85CrossRefGoogle Scholar
  50. Wang D, Xiang Z, Fesenmaier DR (2016) Smartphone use in everyday life and travel. J Travel Res 55(1):52–63CrossRefGoogle Scholar
  51. Xiang Z, Wöber K, Fesenmaier DR (2008) Representation of the online tourism domain in search engines. J Travel Res 47(2):137–150CrossRefGoogle Scholar
  52. Zach F, Gretzel U (2011) Tourist-activated networks: implications for dynamic bundling and EN route recommendations. Inform Technol Tour 13(3):229–238CrossRefGoogle Scholar
  53. Zoltan J, McKercher B (2015) Analysing intra-destination movements and activity participation of tourists through destination card consumption. Tour Geogr 17(1):19–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Master in Economics and TourismBocconi UniversityMilanItaly
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Institute of TourismUniversity of Applied Sciences and Arts Western Switzerland ValaisSierreSwitzerland

Personalised recommendations