Skip to main content

Advertisement

SpringerLink for Corporate & Health
Typical dampers and energy harvesters based on characteristics of ferrofluids
Download PDF
Download PDF
  • Review Article
  • Open Access
  • Published: 07 July 2022

Typical dampers and energy harvesters based on characteristics of ferrofluids

  • Yanwen Li1,
  • Pengdong Han2,
  • Decai Li1,
  • Siyu Chen1 &
  • …
  • Yuming Wang1 

Friction volume 11, pages 165–186 (2023)Cite this article

  • 370 Accesses

  • 7 Citations

  • Metrics details

Abstract

Ferrofluids are a type of nanometer-scale functional material with fluidity and superparamagnetism. They are composed of ferromagnetic particles, surfactants, and base liquids. The main characteristics of ferrofluids include magnetization, the magnetoviscous effect, and levitation characteristics. There are many mature commercial ferrofluid damping applications based on these characteristics that are widely used in numerous fields. Furthermore, some ferrofluid damping studies such as those related to vibration energy harvesters and biomedical devices are still in the laboratory stage. This review paper summarizes typical ferrofluid dampers and energy harvesting systems from the 1960s to the present, including ferrofluid viscous dampers, ferrofluid inertia dampers, tuned magnetic fluid dampers (TMFDs), and vibration energy harvesters. In particular, it focuses on TMFDs and vibration energy harvesters because they have been the hottest research topics in the ferrofluid damping field in recent years. This review also proposes a novel magnetic fluid damper that achieves energy conversion and improves the efficiency of vibration attenuation. Finally, we discuss the potential challenges and development of ferrofluid damping in future research.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Stephen P S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. U.S. Patent 3 215 572, Nov. 1965.

  2. Singh C, Das A K, Das P K. Levitation of non-magnetizable droplet inside ferrofluid. J Fluid Mech 857: 398–448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu J, Chen D, Cai Z Y, Li D C, Cao Q H, Qian L P. Research on the magnetic fluid levitation force received by a permanent magnet suspended in magnetic fluid: Consideration a surface instability. J Magn Magn Mater 492: 165678 (2019)

    Article  Google Scholar 

  4. Genc S, Derin B. Synthesis and rheology of ferrofluids: A review. Curr Opin Chem Eng 3: 118–124 (2014)

    Article  Google Scholar 

  5. Li W Y, Zhang Z L, Li D C. Rheological properties of silicon oil-based magnetic fluid with magnetic nanoparticles (MNPs)-multiwalled carbon nanotube (MWNT). Smart Mater Struct 28(6): 065023 (2019)

    Article  Google Scholar 

  6. Ryapolov P A, Polunin V M, Shel’deshova E V. An alternative way to study magnetic fluid magnetization and viscosity. J Magn Magn Mater 496: 165924 (2020)

    Article  Google Scholar 

  7. Odenbach S. Recent progress in magnetic fluid research. J Phys Condens Matter 16(32): R1135–R1150 (2004)

    Article  Google Scholar 

  8. Afifah A N, Syahrullail S, Sidik N A C. Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review. Renew Sustain Energy Rev 55: 1030–1040 (2016)

    Article  Google Scholar 

  9. Amirat Y, Hamdache K. Heat transfer in incompressible magnetic fluid. J Math Fluid Mech 14(2): 217–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pilati V, Gomide G, Gomes R C, Goya G F, Depeyrot J. Colloidal stability and concentration effects on nanoparticle heat delivery for magnetic fluid hyperthermia. Langmuir 37(3): 1129–1140 (2021)

    Article  Google Scholar 

  11. Hong C Y, Yeh Y S, Yang S Y, Horng H E, Yang H C. Ordered structures with point-like defects of various shapes in magnetic fluid films. J Magn Magn Mater 283(1): 22–27 (2004)

    Article  Google Scholar 

  12. Zu P, Chan C C, Siang L W, Jin Y X, Zhang Y F, Fen L H, Chen L H, Dong X Y. Magneto-optic fiber Sagnac modulator based on magnetic fluids. Opt Lett 36(8): 1425–1427 (2011)

    Article  Google Scholar 

  13. Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V. Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D Appl Phys 46(39): 395501 (2013)

    Article  Google Scholar 

  14. Li D C. Theory and Application of Magnetic Fluid Sealing. Beijing: Science Press, 2010 (in Chinese).

    Google Scholar 

  15. Zhou H M, Chen Y B, Zhang Y J, Li D C. Simulation and experimental study on pressure transfer mechanism in multitooth magnetic fluid seals. Tribol Trans 64(1): 31–41 (2021)

    Article  Google Scholar 

  16. Wei F F, Mallik A K, Liu D J, Wu Q, Peng G D, Farrell G, Semenova Y. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Sci Rep 7: 4725 (2017)

    Article  Google Scholar 

  17. Zhao Y, Wang X X, Lv R Q, Li G L, Zheng H K, Zhou Y F. Highly sensitive reflective Fabry—Perot magnetic field sensor using magnetic fluid based on vernier effect. IEEE Trans Instrum Meas 70: 7000808 (2021)

    Google Scholar 

  18. Munshi M M, Patel A R, Deheri G M. Lubrication of rough short bearing on shliomis model by ferrofluid considering viscosity variation effect. Int J Math Eng Manag Sci 4(4): 982–997 (2019)

    Google Scholar 

  19. Jia J J, Yang G B, Zhang C L, Zhang S M, Zhang Y J, Zhang P Y. Effects of magnetic ionic liquid as a lubricant on the friction and wear behavior of a steel—steel sliding contact under elevated temperatures. Friction 9(1): 61–74 (2021)

    Article  Google Scholar 

  20. Wang J H, Zhuang W P, Liang W F, Yan T T, Li T, Zhang L X, Li S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction 10(5): 645–676 (2022)

    Article  Google Scholar 

  21. Wang Y M, Cao X, Liu G H, Hong R Y, Chen Y M, Chen X F, Li H Z, Xu B, Wei D G. Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J Magn Magn Mater 323(23): 2953–2959 (2011)

    Article  Google Scholar 

  22. El-Amri I, Iquebal A S, Srinivasa A, Bukkapatnam S. Localized magnetic fluid finishing of freeform surfaces using electropermanent magnets and magnetic concentration. J Manuf Process 34: 802–808 (2018)

    Article  Google Scholar 

  23. Mutalib N A, Ismail I, Soffie S M, Aqida S N. Magnetorheological finishing on metal surface: A review. IOP Conf Ser Mater Sci Eng 469: 012092 (2019)

    Article  Google Scholar 

  24. Raj K, Moskowitz R. Commercial applications of ferrofluids. J Magn Magn Mater 85(1–3): 233–245 (1990)

    Article  Google Scholar 

  25. Torres-Díaz I, Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 10(43): 8584–8602 (2014)

    Article  Google Scholar 

  26. Yu L Q, Zheng L J, Yang J X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Mater Chem Phys 66(1): 6–9 (2000)

    Article  Google Scholar 

  27. Hao R C, Liu H G, Wang S. Preparation and parameters measurement of magnetic fluid. J Phys Conf Ser 1637(1): 012016 (2020)

    Article  Google Scholar 

  28. Odenbach S. Ferrofluids—Magnetically controlled suspensions. Colloids Surf A Physicochem Eng Aspects 217(1–3): 171–178 (2003)

    Article  Google Scholar 

  29. Rosensweig R E. Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid. Nature 210(5036): 613–614 (1966)

    Article  Google Scholar 

  30. Yang W M, Li D C, He X Z, Li Q. Calculation of magnetic levitation force exerted on the cylindrical magnets immersed in ferrofluid. Int J Appl Electromagn Mech 40(1): 37–49 (2012)

    Article  Google Scholar 

  31. Rosensweig R E, Kaiser R, Miskolczy G. Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29(4): 680–686 (1969)

    Article  Google Scholar 

  32. McTague J P. Magnetoviscosity of magnetic colloids. J Chem Phys 51(1): 133–136 (1969)

    Article  Google Scholar 

  33. Rabinow J. The magnetic fluid clutch. Trans Am Inst Electr Eng 67(2): 1308–1315 (1948)

    Article  Google Scholar 

  34. Wereley N. Magnetorheology: Advances and Applications. Cambridge (UK): Royal Society of Chemistry, 2013.

    Book  Google Scholar 

  35. Rosensweig R E. Ferrohydrodynamics. Cambridge (UK): Cambridge University Press, 1997.

    Google Scholar 

  36. Shahrivar K, Morillas J R, Luengo Y, Gavilan H, Morales P, Bierwisch C, de Vicente J. Rheological behavior of magnetic colloids in the borderline between ferrofluids and magnetorheological fluids. J Rheol 63(4): 547–558 (2019)

    Article  Google Scholar 

  37. Rabbani Y, Hajinajaf N, Tavakoli O. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core—shell structured by cellulose. J Therm Anal Calorim 135(3): 1687–1697 (2019)

    Article  Google Scholar 

  38. Jahan N, Pathak S, Jain K, Pant R P. Enchancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid. Colloids Surf A Physicochem Eng Aspects 529: 88–94 (2017)

    Article  Google Scholar 

  39. Zhao P H, Fu Y Z, Li H L, Zhang C Y, Liu Y Q. Three-dimensional simulation study on the aggregation behavior and shear properties of magnetorheological fluid. Chem Phys Lett 722: 74–79 (2019)

    Article  Google Scholar 

  40. Paul P S, Iasanth J A, Vasanth X A, Varadarajan A S. Effect of nanoparticles on the performance of magnetorheological fluid damper during hard turning process. Friction 3(4): 333–343 (2015)

    Article  Google Scholar 

  41. Yuan X J, Tian T Y, Ling H T, Qiu T Y, He H L. A review on structural development of magnetorheological fluid damper. Shock Vib 2019: 1498962 (2019)

    Google Scholar 

  42. Missiles A. Feasibility study and model development for a ferrofluid viscous damper. Final report. Massachusett (UK): Space and Electronics Group, 1967, No. NASA-CR-94173, AVSSD-0222-67-CR.

    Google Scholar 

  43. Shimada K, Kanno H, Ogawa J, Syuchi S, Kamiyama S. New magnetic viscous damper with intelligent or smart fluid for the next generation. In: Proceedings of the Nano-and Microtechnology: Materials, Processes, Packaging, and Systems, Melbourne, Australia, 2002: 241–251.

  44. Shimada K, Kamiyama S. Magnetic field effect on dynamic characteristics of magnetic fluid viscous damper. Transactions of the Japan Society of Mechanical Engineers Series B 59(567): 3493–3497 (1993) (in Japanese)

    Article  Google Scholar 

  45. Shimada K, Kamiyama S. A basic study on oscillatory characteristics of magnetic fluid viscous damper. Transactions of the Japan Society of Mechanical Engineers Series B 57(544): 4111–4115 (1991) (in Japanese)

    Article  Google Scholar 

  46. Moskowitz R, Stahl P, Reed W R. Inertia damper using ferrofluid. U.S. Patent 4 123 675, Oct. 1978.

  47. Yang W M. Magnetic levitation force exerted on the cylindrical magnet in a ferrofluid damper. J Vib Control 23(14): 2345–2354 (2017)

    Article  MathSciNet  Google Scholar 

  48. Yu J, Chen J W, Li D C. Experimental error analysis of measuring the magnetic self-levitation force experienced by a permanent magnet suspended in magnetic fluid with a nonmagnetic rod. J Magn Magn Mater 469: 323–328 (2019)

    Article  Google Scholar 

  49. Bashtovoi V, Lavrova O, Mitkova T, Polevikov V, Tobiska L. Flow and energy dissipation in a magnetic fluid drop around a permanent magnet. J Magn Magn Mater 289: 207–210 (2005)

    Article  Google Scholar 

  50. Yang W R, Su J Z, Wei D J, Zhang Y M, Chen Y, Yang Q X, Yang X R. Experimental research on energy dissipation based on damping of magnetic fluid. Mater Res Express 7(10): 106103 (2020)

    Article  Google Scholar 

  51. Bashtovoi V G, Kabachnikov D N, Kolobov A Y, Samoylov V B, Vikoulenkov A V. Research of the dynamics of a magnetic fluid dynamic absorber. J Magn Magn Mater 252: 312–314 (2002)

    Article  Google Scholar 

  52. Iusan V Z, Stanci A G. Inertial magnetofluidic sensor. IEEE Trans Magn 30(2): 1104–1106 (1994)

    Article  Google Scholar 

  53. Yao J, Li D C, Chen X Z, Huang C, Xu D J. Damping performance of a novel ferrofluid dynamic vibration absorber. J Fluids Struct 90: 190–204 (2019)

    Article  Google Scholar 

  54. Ohno K I, Sawada T. An effect of vertical sloshing on a fluid pressure and a surface displacement in a tuned magnetic fluid damper. Int J Appl Electromagn Mech 33(3–4): 1411–1416 (2010)

    Article  Google Scholar 

  55. Sawada T, Ohira Y, Houda H. Sloshing motion of a magnetic fluid in a cylindrical container due to horizontal oscillation. Energy Convers Manag 43(3): 299–308 (2002)

    Article  Google Scholar 

  56. Ohno K I, Suzuki H, Sawada T. Analysis of liquid sloshing of a tuned magnetic fluid damper for single and co-axial cylindrical containers. J Magn Magn Mater 323(10): 1389–1393 (2011)

    Article  Google Scholar 

  57. Foong F M, Thein C K, Yurchenko D. A two-stage electromagnetic coupling and structural optimisation for vibration energy harvesters. Smart Mater Struct 29(8): 085030 (2020)

    Article  Google Scholar 

  58. Foong F M, Thein C K, Yurchenko D. Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester. J Sound Vib 482: 115470 (2020)

    Article  Google Scholar 

  59. Raj K, Moskowitz R. A review of damping applications of ferrofluids. IEEE Trans Magn 16(2): 358–363 (1980)

    Article  Google Scholar 

  60. Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater 149(1–2): 174–180 (1995)

    Article  Google Scholar 

  61. Raj K, Boulton R J. Ferrofluids—Properties and applications. Mater Des 8(4): 233–236 (1987)

    Article  Google Scholar 

  62. Popplewell J, Charles S. Ferromagnetic liquids—Their magnetic properties and applications. IEEE Trans Magn 17(6): 2923–2928 (1981)

    Article  Google Scholar 

  63. Charles S W, Popplewell J. Properties and applications of magnetic liquids. Endeavour 6(4): 153–161 (1982)

    Article  Google Scholar 

  64. Azzawi S, Hindmarch A T, Atkinson D. Magnetic damping phenomena in ferromagnetic thin-films and multilayers. J Phys D Appl Phys 50(47): 473001 (2017)

    Article  Google Scholar 

  65. Huang C, Yao J, Zhang T Q, Chen Y B, Jiang H W, Li D C. Damping applications of ferrofluids: A review. J Magn 22(1): 109–121 (2017)

    Article  Google Scholar 

  66. Khairul M A, Doroodchi E, Azizian R, Moghtaderi B. Advanced applications of tunable ferrofluids in energy systems and energy harvesters: A critical review. Energy Convers Manag 149: 660–674 (2017)

    Article  Google Scholar 

  67. Guimarães A B, Cunha F R, Gontijo R G. The influence of hydrodynamic effects on the complex susceptibility response of magnetic fluids undergoing oscillatory fields: New insights for magnetic hyperthermia. Phys Fluids 32(1): 012008 (2020)

    Article  Google Scholar 

  68. Loring S H, Butler J P. Potential hydrodynamic origin of frictional transients in sliding mesothelial tissues. Friction 1(2): 163–177 (2013)

    Article  Google Scholar 

  69. Hao R C, Liu H G, Feng Z X. Research on magnetism and magnetization intensity of magnetic fluid. J Phys Conf Ser 1637(1): 012061 (2020)

    Article  MathSciNet  Google Scholar 

  70. Vegera Z. Magnetic fluid phase separation in an electric field. IOP Conf Ser Mater Sci Eng 1047(1): 012176 (2021)

    Article  Google Scholar 

  71. Neuringer J L, Rosensweig R E. Ferrohydrodynamics. Phys Fluids 7(12): 1927–1937 (1964)

    Article  MathSciNet  Google Scholar 

  72. Shliomis M I. Ferrohydrodynamics: Testing a third magnetization equation. Phys Rev E 64(6): 060501 (2001)

    Article  MathSciNet  Google Scholar 

  73. Chi C Q. Basic Physics and Application of Ferrofluids. Beijing: Beihang University Press, 2011 (in Chinese).

    Google Scholar 

  74. Oldenburg C M, Borglin S E, Moridis G J. Numerical simulation of ferrofluid flow for subsurface environmental engineering applications. Transp Porous Media 38(3): 319–344 (2000)

    Article  Google Scholar 

  75. Zhang Z Y, Wu C G, Zhang Q, Cao Y G. Friction of two-dimensional colloidal particles with magnetic dipole and Lennard—Jones interactions: A numerical study. Friction 8(4): 666–673 (2020)

    Article  Google Scholar 

  76. Yu J, He X Z, Li D C, Li W Y. Boundary interface condition of magnetic fluid determines the magnetic levitation force experienced by a permanent magnet suspended in the magnetic fluid. Phys Fluids 30(9): 092004 (2018)

    Article  Google Scholar 

  77. Litte R, Beltracchi L. Viscous damper using magnetic ferrofluid. U.S. Patent 3 538 469, Nov. 1970.

  78. Li D C. Theory and Application of Magnetic Fluids. Beijing: Science Press, 2003 (in Chinese).

    Google Scholar 

  79. Zhou G Y, Sun L Z. Smart colloidal dampers with on-demand controllable damping capability. Smart Mater Struct 17(5): 055023 (2008)

    Article  Google Scholar 

  80. Constantinou M C, Symans M D, Tsopelas P, Taylor D. Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation. Proceedings ATC 17(1): 581–592 (1993)

    Google Scholar 

  81. Ye Z Q, Li A Q, Xu Y L. Fluid viscous damper technology and its engineering application for structural vibration energy dissipation. J Southeast University Nat Sci Ed 32(3): 466–473 (2002) (in Chinese)

    Google Scholar 

  82. Jiao X L, Zhao Y, Ma W L. Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper. Nonlinear Dyn 92(3): 1167–1184 (2018)

    Article  Google Scholar 

  83. Tsai C S. Temperature effect of viscoelastic dampers during earthquakes. J Struct Eng 120(2): 394–409 (1994)

    Article  Google Scholar 

  84. Tsai C S, Lee H H. Applications of viscoelastic dampers to high-rise buildings. J Struct Eng 119(4): 1222–1233 (1993)

    Article  Google Scholar 

  85. Xu Y S, Xu Z D, Guo Y Q, Ge T, Xu C, Huang X H. Theoretical and experimental study of viscoelastic damper based on fractional derivative approach and micromolecular structures. J Vib Acoust 141(3): 031010 (2019)

    Article  Google Scholar 

  86. Mualla I H, Belev B. Performance of steel frames with a new friction damper device under earthquake excitation. Eng Struct 24(3): 365–371 (2002)

    Article  Google Scholar 

  87. Xu Y L, Qu W L, Chen Z H. Control of wind-excited truss tower using semiactive friction damper. J Struct Eng 127(8): 861–868 (2001)

    Article  Google Scholar 

  88. Bae J S, Kwak M K, Inman D J. Vibration suppression of a cantilever beam using eddy current damper. J Sound Vib 284(3–5): 805–824 (2005)

    Article  Google Scholar 

  89. Sodano H A, Bae J S. Eddy current damping in structures. Shock Vib Dig 36(6): 469–478 (2004)

    Article  Google Scholar 

  90. Zhang H Y, Chen Z Q, Hua X G, Huang Z W, Niu H W. Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control. Mech Syst Signal Process 145: 106879 (2020)

    Article  Google Scholar 

  91. Zhang Z, Ou J P, Li D S, Zhang S F. Optimization design of coupling beam metal damper in shear wall structures. Appl Sci 7(2): 137 (2017)

    Article  Google Scholar 

  92. Javanmardi A, Ibrahim Z, Ghaedi K, Benisi Ghadim H, Hanif M U. State-of-the-art review of metallic dampers: Testing, development and implementation. Arch Comput Methods Eng 27(2): 455–478 (2020)

    Article  Google Scholar 

  93. Benavent-Climent A, Escolano-Margarit D, Arcos-Espada J, Ponce-Parra H. New metallic damper with multiphase behavior for seismic protection of structures. Metals 11(2): 183 (2021)

    Article  Google Scholar 

  94. Raj K, Moscowitz B D. Ferrofluids step up motor precision. Machine Design 67(2): 57–60 (1995)

    Google Scholar 

  95. Matsumoto T. Damper device for motor. U.S. Patent 5 178 026, Jan. 1993.

  96. Sato H, Hangai M. Solenoid valve with magnetic fluid damper. U.S. Patent 6 213 445, Apr. 2001.

  97. King J A. Method for making loudspeaker with magnetic fluid enveloping the voice coil. U.S. Patent 4 017 694, Apr. 1977.

  98. Price J T, Kruse J M. Magnetically controllable couplings containing ferrofluids. U.S. Patent 4 957 644, Sept. 1990.

  99. Calarasu D, Cotae C, Olaru R. Magnetic fluid brake. J Magn Magn Mater 201(1–3): 401–403 (1999)

    Article  Google Scholar 

  100. Nakatsuka K, Yokoyama H, Shimoiizaka J, Funaki T. Damper application of magnetic fluid for a vibration isolating table. J Magn Magn Mater 65(2–3): 359–362 (1987)

    Article  Google Scholar 

  101. Fukuda H, Ueno K, Kamiyama S, Oyama T. Study on active damper with a magnetic fluid. JSME International Journal Series B Fluids and Thermal Engineering 41(4): 822–829 (1998)

    Article  Google Scholar 

  102. Liu J. Analysis of a porous elastic sheet damper with a magnetic fluid. J Tribol 131(2): 021801 (2009)

    Article  Google Scholar 

  103. Cunha L H P, Siqueira I R, Cunha F R, Oliveira T F. Effects of external magnetic fields on the rheology and magnetization of dilute emulsions of ferrofluid droplets in shear flows. Phys Fluids 32(7): 073306 (2020)

    Article  Google Scholar 

  104. Nowak J, Borin D, Haefner S, Richter A, Odenbach S. Magnetoviscous effect in ferrofluids diluted with sheep blood. J Magn Magn Mater 442: 383–390 (2017)

    Article  Google Scholar 

  105. Borin D Y, Korolev V V, Ramazanova A G, Odenbach S, Balmasova O V, Yashkova V I, Korolev D V. Magnetoviscous effect in ferrofluids with different dispersion media. J Magn Magn Mater 416: 110–116 (2016)

    Article  Google Scholar 

  106. Güth D, Schamoni M, Maas J. Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior. Smart Mater Struct 22(9): 094010 (2013)

    Article  Google Scholar 

  107. Liu H, Liu G X, Ye J J. Viscous force model analysis of magnetic viscous effect in magnetic fluid. Adv Mater Res 268-270: 225–230 (2011)

    Article  Google Scholar 

  108. Rosensweig R E. Fluidmagnetic buoyancy. Aiaa J 4(10): 1751–1758 (1966)

    Article  Google Scholar 

  109. Yao J, Chen Y B, Li Z K, Zhang T Q, Li D C. A novel accelerometer based on the first kind of ferrofluid levitation principle. Smart Mater Struct 25(9): 095016 (2016)

    Article  Google Scholar 

  110. Assadsangabi B, Tee M H, Takahata K. Electromagnetic microactuator realized by ferrofluid-assisted levitation mechanism. J Microelectromechanical Syst 23(5): 1112–1120 (2014)

    Article  Google Scholar 

  111. Yang W M, Liu B Y. Magnetic levitation force of composite magnets in a ferrofluid damper. Smart Mater Struct 27(11): 115009 (2018)

    Article  Google Scholar 

  112. Yu J, Chen D, Cai Z Y, Li D C, Cao Q H, Qian L P. Research on the magnetic fluid levitation force received by a permanent magnet suspended in magnetic fluid: Consideration a surface instability. J Magn Magn Mater 492: 165678 (2019)

    Article  Google Scholar 

  113. Qian L P, Li D C, Yu J. Study of the second-order levitation force in the magnetic fluid accelerometer. IEEE Sens J 15(12): 6805–6810 (2015)

    Article  Google Scholar 

  114. Zelazo R E, Melcher J R. Dynamics and stability of ferrofluids: Surface interactions. J Fluid Mech 39(1): 1–24 (1969)

    Article  MATH  Google Scholar 

  115. Sudo S, Hashimoto H, Katagiri K. Dynamics of magnetic fluid foam. J Magn Magn Mater 85(1–3): 159–162 (1990)

    Article  Google Scholar 

  116. Abe M, Fujino Y, Kimura S. Active tuned liquid damper (TLD) with magnetic fluid. In: Proceedings of the 5th Annual International Symposium on Smart Structures and Materials, San Diego, USA, 1998: 620–623.

  117. Ohira Y, Houda H, Sawada T. Effect of magnetic field on a tuned liquid damper using a magnetic fluid. Int J Appl Electromagn Mech 13(1–4): 71–78 (2002)

    Article  Google Scholar 

  118. Horie S, Shimoda M, Ohno K I, Nakamura J, Sawada T. Effective method of applying magnetic field on a tuned liquid damper using a magnetic fluid. Int J Appl Electromagn Mech 25(1–4): 139–143 (2007)

    Article  Google Scholar 

  119. Ohno K, Shimoda M, Sawada T. Optimal design of a tuned liquid damper using a magnetic fluid with one electromagnet. J Phys Condens Matter 20(20): 204146 (2008)

    Article  Google Scholar 

  120. Ohno K I, Suzuki H, Sawada T. Improvement of a tuned magnetic fluid damper with a coaxial cylindrical container. Proc Fluids Eng Conf 2009: 205–206 (2009) (in Japanese)

    Article  Google Scholar 

  121. Sakai F. Tuned liquid column damper-new type device for suppression of building vibration. In: Proceedings of the International Conference on High-rise Buildings, 1989: 926–931.

  122. Masuda H, Oyamada T, Sawada T. Experimental study on damping characteristics of the tuned liquid column damper with magnetic fluid. J Phys Conf Ser 412: 012049 (2013)

    Article  Google Scholar 

  123. Oyamada T, Masuda H, Ikari K, Sawada T. Damping characteristics of a magnetic fluid tuned liquid column damper under static magnetic fields. Int J Appl Electromagn Mech 45(1–4): 659–665 (2014)

    Article  Google Scholar 

  124. Kondo S, Ikari K, Sawada T. Vibrating properties of a magnetic-fluid tuned liquid column damper with different U-pipes. Mater Sci Forum 856: 21–25 (2016)

    Article  Google Scholar 

  125. Yang X R, Yang Q X, Yang W R, Xu G Z. Magnetic field analysis and optimum design of adjustable magnetic liquid damper. In: Proceedings of the 20th International Conference on Electrical Machines and Systems, Sydney, Australia, 2017: 1–5.

  126. Yang X R, Yang Q X, Yang W R, Guo B, Chen L F. Analysis of adjustable magnetic fluid damper in DC magnetic field for spacecraft applications. IEEE Trans Appl Supercond 28(3): 0602305 (2018)

    Article  Google Scholar 

  127. Wang S Q, Liu Y K, Li D C, He X Z. A ferrofluid-based tuned mass damper with magnetic spring. Int J Appl Electromagn Mech 60(1): 13–19 (2019)

    Article  Google Scholar 

  128. Kaneko S, Ishiyama T, Sawada T. Effect of an applied magnetic field on sloshing pressure in a magnetic fluid. J Phys Conf Ser 412: 012018 (2013)

    Article  Google Scholar 

  129. Sawada T, Ohira Y, Houda H. Sloshing behavior of a magnetic fluid in a cylindrical container. Exp Fluids 32(2): 197–203 (2002)

    Article  Google Scholar 

  130. Wang Z, He L P, Gu X F, Yang S, Wang S C, Wang P K, Cheng G. Rotational energy harvesting systems using piezoelectric materials: A review. Rev Sci Instrum 92(4): 041501 (2021)

    Article  Google Scholar 

  131. Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80: 105567 (2021)

    Article  Google Scholar 

  132. Pan S H, Zhang Z N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1): 2–17 (2019)

    Article  Google Scholar 

  133. Bibo A, Masana R, King A, Li G, Daqaq M F. Electromagnetic ferrofluid-based energy harvester. Phys Lett A 376(32): 2163–2166 (2012)

    Article  Google Scholar 

  134. Alazemi S F, Daqaq M F. Ferrofluids for concurrent vibration absorption and energy harvesting. In: Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, USA, 2014: SMASIS2013-3298.

  135. Chae S H, Ju S, Choi Y, Jun S, Park S M, Lee S, Lee H W, Ji C H. Electromagnetic vibration energy harvester using springless proof mass and ferrofluid as a lubricant. J Phys Conf Ser 476: 012013 (2013)

    Article  Google Scholar 

  136. Monroe J G, Vasquez E S, Aspin Z S, Fairley J D, Walters K B, Berg M J, Thompson S M. Energy harvesting via ferrofluidic induction. In: Proceedings of the Energy Harvesting and Storage: Materials, Devices, and Applications VI, Baltimore, USA, 2015: 94930G.

  137. Wang Y F, Zhang Q, Zhao L R, Kim E S. Ferrofluid liquid spring for vibration energy harvesting. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems, Estoril, Portugal, 2015: 122–125.

  138. Alazemi S F, Bibo A, Daqaq M F. A ferrofluid-based energy harvester: An experimental investigation involving internally-resonant sloshing modes. Eur Phys J Spec Top 224(14–15): 2993–3004 (2015)

    Article  Google Scholar 

  139. Choi Y, Ju S N, Chae S H, Jun S, Ji C H. Low-frequency vibration energy harvester using a spherical permanent magnet with controlled mass distribution. Smart Mater Struct 24(6): 065029 (2015)

    Article  Google Scholar 

  140. Kim D, Yu S, Kang B G, Yun K S. Liquid-based electrostatic energy harvester using rotational motion of ferrofluid droplets. In: Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-state Sensors, Actuators and Microsystems, Anchorage, USA, 2015: 59–61.

  141. Seol M L, Jeon S B, Han J W, Choi Y K. Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31: 233–238 (2017)

    Article  Google Scholar 

  142. Wu S, Luk P C K, Li C F, Zhao X Y, Jiao Z X. Investigation of an electromagnetic wearable resonance kinetic energy harvester with ferrofluid. IEEE Trans Magn 53(9): 4600706 (2017)

    Article  Google Scholar 

  143. Wu S, Luk P C K, Li C F, Zhao X Y, Jiao Z X, Shang Y X. An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant. Appl Energy 197: 364–374 (2017)

    Article  Google Scholar 

  144. Liu Q, Alazemi S F, Daqaq M F, Li G. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation. J Magn Magn Mater 449: 105–118 (2018)

    Article  Google Scholar 

  145. Wang S Q, Liu Y K, Li D C, Zhang Z L. A ferrofluid-based planar vibration energy harvester for smart lock of shared bicycle. Int J Appl Electromagn Mech 61(2): 293–300 (2019)

    Article  Google Scholar 

  146. Afnison W, Maksum H, Hidayat N. The effect of vibration energy harvester mechanism toward the shock absorber efficiency. J Phys Conf Ser 1594(1): 012034 (2020)

    Article  Google Scholar 

  147. Nabavi S, Zhang L H. Frequency tuning and efficiency improvement of piezoelectric MEMS vibration energy harvesters. J Microelectromechanical Syst 28(1): 77–87 (2019)

    Article  Google Scholar 

  148. Zhou M Y, Al-Furjan M S H, Wang B. Modeling and efficiency analysis of a piezoelectric energy harvester based on the flow induced vibration of a piezoelectric composite pipe. Sensors 18(12): 4277 (2018)

    Article  Google Scholar 

  149. Yar A. High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting. Energy 222: 119949 (2021)

    Article  Google Scholar 

  150. Zhang S C, Liu Z F, Ruan M N, Guo Z G, E L, Zhao W, Zhao D, Wu X F, Chen D M. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl Catal B Environ 262: 118279 (2020)

    Article  Google Scholar 

  151. Shuai C J, Liu G F, Yang Y W, Yang W J, He C X, Wang G Y, Liu Z, Qi F W, Peng S P. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf B Biointerfaces 185: 110587 (2020)

    Article  Google Scholar 

  152. Katsouras I, Asadi K, Li M Y, van Driel T B, Kjær K S, Zhao D, Lenz T, Gu Y, Blom P W M, Damjanovic D, et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat Mater 15(1): 78–84 (2016)

    Article  Google Scholar 

  153. Schwierz F. Graphene transistors. Nat Nanotechnol 5(7): 487–496 (2010)

    Article  Google Scholar 

  154. Dai Z C, Huang Y, Yang H, Yao P P, Yang Y X, Ni C Y. Preparation and biological applications of graphene oxide functionalized water-based magnetic fluids. J Nanosci Nanotechnol 18(1): 735–742 (2018)

    Article  Google Scholar 

  155. Wu P, Chen X C, Zhang C H, Zhang J P, Luo J B, Zhang J Y. Modified graphene as novel lubricating additive with high dispersion stability in oil. Friction 9(1): 143–154 (2021)

    Article  Google Scholar 

  156. Liu L C, Zhou M, Jin L, Li L C, Mo Y T, Su G S, Li X, Zhu H W, Tian Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7(3): 199–216 (2019)

    Article  Google Scholar 

  157. Fujita T, Wada Y, Obinata G, Akagami Y, Nishimura S, Ogasawara Y. Comparison of frequency characteristics in a damper using magnetic fluid, ER fluid dispersing smectite, and mixed ER magnetic fluid. Int J Mod Phys B 10(23–24): 3001–3010 (1996)

    Article  Google Scholar 

  158. Yemets V, Masliany M, Kostritsyn O. Coated magnetic powder as a sealing and damping material. Magnetohydrodynamics 43(3): 355–361 (2007)

    Article  Google Scholar 

  159. Siddiqa S, Naqvi S B, Hossain M A, Massarotti N, Mauro A. Strong temperature dependent viscosity effects on bio-magnetic fluid flow under the action of localized magnetic field and viscous dissipation. J Mol Liq 248: 616–625 (2017)

    Article  Google Scholar 

  160. Li Y W, Li D C. The dynamics analysis of a magnetic fluid shock absorber with different inner surface materials. J Magn Magn Mater 542: 168473 (2022)

    Article  Google Scholar 

  161. Li Y W, Li D C. Hexagonal structure enhancing damping efficiency inspired by tree frogs. ChemRxiv, DOI https://doi.org/10.26434/chemrxiv-2022-m1brm (2022)

  162. Zhao J J, Wang Y Q, Zhang P, Jian G X. A Newtonian thermal elastohydrodynamic lubrication model for ferrofluid-lubricated involute spur gear pair. Lubr Sci 32(2): 33–15 (2020)

    Article  Google Scholar 

  163. Shah R C, Shah R B. Derivation of ferrofluid lubrication equation for slider bearings with variable magnetic field and rotations of the carrier liquid as well as magnetic particles. Meccanica 53(4–5): 857–869 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  164. Odenbach S. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Berlin: Springer Berlin Heidelberg, 2009.

    Book  Google Scholar 

  165. Lübbe A S, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res 95(2): 200–206 (2001)

    Article  Google Scholar 

  166. Fortin J P, Wilhelm C, Servais J, Ménager C, Bacri J C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9): 2628–2635 (2007)

    Article  Google Scholar 

  167. Gneveckow U, Jordan A, Scholz R, Brüß V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P. Description and characterization of the novel hyperthermia-and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia. Med Phys 31(6): 1444–1451 (2004)

    Article  Google Scholar 

  168. Dirican E K, Özgün O D, Akarsu S, Akin K O, Ercan Ö, Uǧurlu M, Çamsari Ç, Kanyilmaz O, Kaya A, Ünsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 25(8): 375–381 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Weihua LI who provided the valuable modification suggestions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 51735006, 51927810, and U1837206) and Beijing Municipal Natural Science Foundation (Grant No. 3182013).

Author information

Authors and Affiliations

  1. State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China

    Yanwen Li, Decai Li, Siyu Chen & Yuming Wang

  2. School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China

    Pengdong Han

Authors
  1. Yanwen Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pengdong Han
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Decai Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Siyu Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yuming Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Decai Li.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Yanwen LI. She received her bachelor’s degree in mechatronics engineering in 2019 from Harbin Institute of Technology, Harbin, China. After then, she is now a Ph.D. student in the Department of Mechanical Engineering at Tsinghua University, Beijing, China. Her research interests include the theory and damping applications of ferrofluids.

Decai LI. He received his Ph.D. degree in mechanical engineering from Beijing Jiaotong University, Beijing, China, in 1996. He joined the Department of Mechanical Engineering at Tsinghua University, Beijing, China, from 2015. His current position is a professor and deputy director of the State Key Laboratory of Tribology at Tsinghua University, Beijing, China. His research areas cover the theory and applications of ferrofluids.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Han, P., Li, D. et al. Typical dampers and energy harvesters based on characteristics of ferrofluids. Friction 11, 165–186 (2023). https://doi.org/10.1007/s40544-022-0616-7

Download citation

  • Received: 25 April 2021

  • Revised: 21 August 2021

  • Accepted: 07 March 2022

  • Published: 07 July 2022

  • Issue Date: February 2023

  • DOI: https://doi.org/10.1007/s40544-022-0616-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • ferrofluid characteristics
  • damping applications
  • ferrofluid viscous dampers
  • ferrofluid inertia dampers
  • tuned magnetic fluid dampers (TMFDs)
  • vibration energy harvesters
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.