Friction

, Volume 6, Issue 1, pp 1–31 | Cite as

Stress-augmented thermal activation: Tribology feels the force

Open Access
Review Article
  • 21 Downloads

Abstract

In stress-augmented thermal activation, the activation energy barrier that controls the rate of atomic and molecular processes is reduced by the application of stress, with the result that the rate of these processes increases exponentially with applied stress. This concept has particular relevance to Tribology, and since its development in the early twentieth century, it has been applied to develop important models of plastic flow, sliding friction, rheology, wear, and tribochemistry. This paper reviews the development of stress-augmented thermal activation and its application to all of these areas of Tribology. The strengths and limitations of the approach are then discussed and future directions considered. From the scientific point of view, the concept of stress-augmented thermal activation is important since it enables the development of models that describe macroscale tribological performance, such as friction coefficient or tribofilm formation, in terms of the structure and behaviour of individual atoms and molecules. This both helps us understand these processes at a fundamental level and also provides tools for the informed design of lubricants and surfaces.

Keywords

stress activation stress augmented thermal activation mechanochemistry friction EHD friction wear Eyring 

References

  1. [1]
    Karman T V. Physikalische Grundlagen der Festigkeitslehre, Section 24 67–770, Sept. 1914. Art 31, of Mechanics of deformable bodies in Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Vol. IV, Part 4, C, eds. Felix Klein and Conrad Muller, Leipzig, 1907–1914.Google Scholar
  2. [2]
    Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z Angew Math Mech 8(2): 85–106 (1928)MATHCrossRefGoogle Scholar
  3. [3]
    Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4(4): 283–291 (1936)CrossRefGoogle Scholar
  4. [4]
    Moore W J. Physical Chemistry. 4th ed. London (UK): Longman Green & Co., 1963.Google Scholar
  5. [5]
    Ewell R H. The reaction rate theory of viscosity and some of its applications. J Appl Phys 9(4): 252–269 (1938)CrossRefGoogle Scholar
  6. [6]
    Becker R. Über die plastizität amorpher und kristalliner fester körper. Phys Z 26: 919–925 (1925)MATHGoogle Scholar
  7. [7]
    Kincaid J F, Eyring H, Stearn A E. The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem Rev 28(2): 301–365 (1941)CrossRefGoogle Scholar
  8. [8]
    Glasstone S, Laidler K J, Eyring H. Theory of Rate Processes. New York (USA): McGraw-Hill Inc., 1941.Google Scholar
  9. [9]
    Ewell R H, Eyring H. Theory of the viscosity of liquids as a function of temperature and pressure. J Chem Phys 5(9): 726–736 (1937)CrossRefGoogle Scholar
  10. [10]
    Powell R E, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature 154(3909): 427–428 (1944)CrossRefGoogle Scholar
  11. [11]
    Eyring H, Ree T, Hirai N. The viscosity of high polymers— The random walk of a group of connected segments. Proc Nat Acad Sci USA 44(12): 1213–1217 (1958)CrossRefGoogle Scholar
  12. [12]
    Moore Jr W J, Eyring H. Theory of the viscosity of unimolecular films. J Chem Phys 6(7): 391–394 (1938)CrossRefGoogle Scholar
  13. [13]
    Kauzmann W. Flow of solid metals from the standpoint of the chemical-rate theory. Trans Am Inst Min Metall Eng 143: 57–83 (1941)Google Scholar
  14. [14]
    Kauzmann W, Eyring H. The viscous flow of large molecules. J Amer Chem Soc 62(11): 3113–3125 (1940)CrossRefGoogle Scholar
  15. [15]
    Tobolsky A, Eyring H. Mechanical properties of polymeric materials. J Chem Phys 11(3): 125–134 (1943)CrossRefGoogle Scholar
  16. [16]
    Spikes H A, Tysoe W. On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol Lett 59(1): 21 (2015)CrossRefGoogle Scholar
  17. [17]
    Schallamach A. The velocity and temperature dependence of rubber friction. Proc Phys Soc B 66(5): 386–392 (1953)CrossRefGoogle Scholar
  18. [18]
    Schallamach A. Friction and abrasion of rubber. Wear 1(5): 384–417 (1958)CrossRefGoogle Scholar
  19. [19]
    Bueche F. Tensile strength of plastics above the glass temperature. J Appl Phys 26(9): 1133–1140 (1955)CrossRefGoogle Scholar
  20. [20]
    Bueche F. Tensile strength of plastics below the glass temperature. J Appl Phys 28(7): 784–787 (1957)CrossRefGoogle Scholar
  21. [21]
    Bueche F. Mechanical degradation of high polymers. J Appl Polym Sci 4(10): 101–106 (1960)CrossRefGoogle Scholar
  22. [22]
    Zhurkov S N, Narzullaev B N. Time dependence of the strength of solids. Zh Tekh Fiz 23(10): 1677–1689 (1953)Google Scholar
  23. [23]
    Zhurkov S N, Tomashevsky É E. Investigation of the strength of solids. Zh Tekh Fiz 25(1): 66–73 (1955)Google Scholar
  24. [24]
    Zhurkov S N. Kinetic concept of the strength of solids. Int J Fract Mech 1(4): 311–322 (1965)Google Scholar
  25. [25]
    Zhurkov S N, Korsukov V E. Atomic mechanism of fracture of solid polymers. J Polym Sci Part B Polym Phys 12(2): 385–398 (1974)CrossRefGoogle Scholar
  26. [26]
    Andrade E N D C, Roscoe R. Glide in metal single crystals. Proc Phys Soc 49(2): 152–177 (1937)CrossRefGoogle Scholar
  27. [27]
    Orowan E. Zur TemperaturabhÄngigkeit der Kristallplastizität. Zeitschr Phys 102(1–2): 112–118 (1936)CrossRefGoogle Scholar
  28. [28]
    Orowan E. Problems of plastic gliding. Proc Phys Soc 52(1): 8–22 (1940)CrossRefGoogle Scholar
  29. [29]
    De Bruyne N A. Note on viscous and plastic flow. Proc Phys Soc 53(3): 251–257 (1941)CrossRefGoogle Scholar
  30. [30]
    Seitz F, Read T A. Theory of the plastic properties of solids. III. J Appl Phys 12(6): 470–486 (1941)CrossRefGoogle Scholar
  31. [31]
    Gemant A. Frictional phenomena. XI: C-solids. J Appl Phys 13(11): 688–696 (1942)CrossRefGoogle Scholar
  32. [32]
    Feltham P. Influence of structure on the plastic flow of steel above the A3-point. Nature 169(4310): 976(1952)CrossRefGoogle Scholar
  33. [33]
    Mott N F. Dislocations, work-hardening and creep. Nature 175(4452): 365–367 (1955)CrossRefGoogle Scholar
  34. [34]
    Seeger A. CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of F.C.C. crystals. London Edinburgh Dublin Philos Mag J Sci 46(382): 1194–1217 (1955)Google Scholar
  35. [35]
    Schoeck G. The activation energy of dislocation movement. Phys Status Solidi (b) 8(2): 499–507 (1965)CrossRefGoogle Scholar
  36. [36]
    Gibbs G B. The thermodynamics of thermally-activated dislocation glide. Phys Status Solidi (b) 10(2): 507–512 (1965)CrossRefGoogle Scholar
  37. [37]
    Cottrell A H. The time laws of creep. J Mech Phys Solids 1(1): 53–63 (1952)CrossRefGoogle Scholar
  38. [38]
    Kocks U F, Argon A S, Ashby M F. Thermodynamics and Kinetics of Slip. Oxford, New York (USA): Pergamon Press, 1975.Google Scholar
  39. [39]
    Antolovich S D, Armstrong R W. Plastic strain localization in metals: origins and consequences. Prog Mater Sci 59: 1–160 (2014)CrossRefGoogle Scholar
  40. [40]
    Pollet J C, Burns S J. Thermally activated crack propagation—Theory. Int J Fract 13(5): 667–679 (1977)CrossRefGoogle Scholar
  41. [41]
    Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals. Acta Metall Mater 40(8): 1803–1808 (1992)CrossRefGoogle Scholar
  42. [42]
    Haward R N, Thackray G. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc Roy Soc A Math Phys Eng Sci 302(1471): 453–472 (1968)CrossRefGoogle Scholar
  43. [43]
    Ward I M. Review: The yield behaviour of polymers. J Mater Sci 6(11): 1397–1417 (1971)CrossRefGoogle Scholar
  44. [44]
    Frisch D, Eyring H, Kincaid J F. Pressure and temperature effects on the viscosity of liquids. J Appl Phys 11(1): 75–80 (1940)CrossRefGoogle Scholar
  45. [45]
    Spikes H A, Zhang J. History, origins and prediction of elastohydrodynamic friction. Tribol Lett 56(1): 1–25 (2014)CrossRefGoogle Scholar
  46. [46]
    Ree T, Eyring H. Theory of non-Newtonian flow. I.Solid plastic system. J Appl Phys 26(7): 793–800 (1955)MATHCrossRefGoogle Scholar
  47. [47]
    Ree F, Ree T, Eyring H. Relaxation theory of transport problems in condensed systems. Ind Eng Chem 50(7): 1036–1040 (1958)MATHCrossRefGoogle Scholar
  48. [48]
    Maron S H, Pierce P E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11(1): 80–95 (1956)CrossRefGoogle Scholar
  49. [49]
    Kumar P, Khonsari M M, Bair S. Full EHL simulations using the actual Ree–Eyring model for shear-thinning lubricants. J Tribol 131(1): 011802 (2009)CrossRefGoogle Scholar
  50. [50]
    Smith F W. The effect of temperature in concentrated contact lubrication. ASLE Trans 5(1): 142–148 (1962)CrossRefGoogle Scholar
  51. [51]
    Plint M A. Traction in elastohydrodynamic contacts. Proc Inst Mech Eng 182(1): 300–306 (1967)CrossRefGoogle Scholar
  52. [52]
    Hirst W, Moore A J. Non-Newtonian behaviour in elastohydrodynamic lubrication. Proc Roy Soc A Math Phys Eng Sci 337(1608): 101–121 (1974)CrossRefGoogle Scholar
  53. [53]
    Hirst W, Moore A J. Elastohydrodynamic lubrication at high pressures. Proc Roy Soc A Math Phys Eng Sci 360(1702): 403–425 (1978)CrossRefGoogle Scholar
  54. [54]
    Hirst W, Moore A J. Elastohydrodynamic lubrication at high pressures II. Non-Newtonian behaviour. Proc Roy Soc A Math Phys Eng Sci 365(1723): 537–565 (1979)CrossRefGoogle Scholar
  55. [55]
    Hirst W, Moore A J. The effect of temperature on traction in elastohydrodynamic lubrication. Philos Trans Roy Soc A Math Phys Eng Sci 298(1438): 183–208 (1980)CrossRefGoogle Scholar
  56. [56]
    Tevaarwerk J, Johnson K L. A simple non-linear constitutive equation for elastohydrodynamic oil films. Wear 35(2): 345–356 (1975)CrossRefGoogle Scholar
  57. [57]
    Johnson K L, Tevaarwerk J L. Shear behaviour of elastohydrodynamic oil films. Proc Roy A Math Phys Eng Sci 356(1685): 215–236 (1977)MATHCrossRefGoogle Scholar
  58. [58]
    Hirst W, Richmond J W. Traction in elastohydrodynamic contacts. Proc Inst Mech Eng Part C J Mech Eng Sci 202(2): 129–144 (1988)CrossRefGoogle Scholar
  59. [59]
    Evans C R, Johnson K L. The rheological properties of elastohydrodynamic lubricants. Proc Inst Mech Eng Part C J Mech Eng Sci 200(2): 303–312 (1986)CrossRefGoogle Scholar
  60. [60]
    Conry T F. Thermal effects on traction in EHD lubrication. J Lubr Technol 103(4): 533–538 (1981)Google Scholar
  61. [61]
    Muraki M. Molecular structure of synthetic hydrocarbon oils and their rheological properties governing traction characteristics. Tribol Int 20(6): 347–354 (1987)CrossRefGoogle Scholar
  62. [62]
    Sui P C, Sadeghi F. Non-Newtonian thermal elastohydrodynamic lubrication. J Tribol 113(2): 390–396 (1991)CrossRefGoogle Scholar
  63. [63]
    Muraki M, Dong D. Derivation of basic rheological parameters from experimental elastohydrodynamic lubrication traction curves of low-viscosity lubricants. Proc Inst Mech Eng Part J J Eng Sci 213(1): 53–61 (1999)CrossRefGoogle Scholar
  64. [64]
    Sharif K J, Morris S J, Evans H P, Snidle R W. Comparison of non-Newtonian EHL models in high sliding applications. Tribol Ser 39: 787–796 (2001)CrossRefGoogle Scholar
  65. [65]
    Sharif K J, Evans H P, Snidle R W, Newall J P. Modeling of film thickness and traction in a variable ratio traction drive rig. Trans J Tribol 126(1): 92–104 (2004)CrossRefGoogle Scholar
  66. [66]
    Bou-Chakra E, Cayer-Barrioz J, Mazuyer D, Jarnias F, Bouffet A. A non-Newtonian model based on Ree–Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol Int 43(9): 1674–1682 (2010)CrossRefGoogle Scholar
  67. [67]
    Gutzow I, Dobreva A, Schmelzer J. Rheology of non- Newtonian glass-forming melts: Part I Flow-stress relations. J Mater Sci 28(4): 890–900 (1993)CrossRefGoogle Scholar
  68. [68]
    Spikes H A. Comment on: Rheology of an ionic liquid with variable carreau exponent: A full picture by molecular simulation with experimental contribution, by Nicolas Voeltzel, Philippe Vergne, Nicolas Fillot, Nathalie Bouscharain, Laurent Joly, Tribology Letters (2016) 64: 25. Tribol Lett 65(2): 72 (2017)CrossRefGoogle Scholar
  69. [69]
    Ewen J P, Gattinoni G, Zhang J, Heyes D M, Spikes H A, Dini D. On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys Chem Chem Phys 19(27): 17883–17894 (2017)CrossRefGoogle Scholar
  70. [70]
    Jadhao V, Robbins M O. Probing large viscosities in glassformers with nonequilibrium simulations. Proc Natl Acad Sci USA 114(30): 7952–7957 (2017)CrossRefGoogle Scholar
  71. [71]
    Voeltzel N, Vergne P, Fillot N, Bouscharain N, Joly L. Rheology of an ionic liquid with variable Carreau exponent: A full picture by molecular simulation with experimental contribution. Tribol Lett 64(2): 25 (2016)CrossRefGoogle Scholar
  72. [72]
    Voeltzel N, Vergne P, Fillot N, Bouscharain N, Joly L. Reply to the Comment on ‘Rheology of an ionic liquid with variable Carreau exponent: A full picture by molecular simulation with experimental contribution’. Tribol Lett 65(2): 73 (2017)CrossRefGoogle Scholar
  73. [73]
    Miller R, Wüstneck R, Krägel J, Kretzschmar G. Dilational and shear rheology of adsorption layers at liquid interfaces. Colloid Surf A 111(1–2): 75–118 (1996)CrossRefGoogle Scholar
  74. [74]
    Bartenev G M. On the theory of dry friction of rubber. Dokl Akad Nauk SSSR 96(6): 1161–1164 (1954)Google Scholar
  75. [75]
    Bartenev G M, El’kin A I. Friction properties of high elastic materials. Wear 8(1): 8–21 (1965)CrossRefGoogle Scholar
  76. [76]
    Schallamach A. A theory of dynamic rubber friction. Wear 6(5): 375–382 (1963)CrossRefGoogle Scholar
  77. [77]
    Bartenev G M, Lavrentjev V V, Konstantinova N A. The actual contact area and friction properties of elastomers under frictional contact with solid surfaces. Wear 18(6): 439–448 (1971)CrossRefGoogle Scholar
  78. [78]
    Schallamach A. How does rubber slide? Wear 17(4): 301–312 (1971)CrossRefGoogle Scholar
  79. [79]
    Steijn R P. Sliding experiments with polytetrafluoroethylene. ASLE Trans 11(3): 235–247 (1968)CrossRefGoogle Scholar
  80. [80]
    Chernyak Y B, Leonov A I. On the theory of the adhesive friction of elastomers. Wear 108(2): 105–138 (1986)CrossRefGoogle Scholar
  81. [81]
    Amuzu J K A, Briscoe B J, Tabor D. The shear properties of poly (N-alkyl methacrylates) in concentrated contacts. ASLE Trans 20(2): 152–160 (1977)CrossRefGoogle Scholar
  82. [82]
    Briscoe B J, Tabor D. Shear properties of thin polymeric films. J Adhes 9(2): 145–155 (1978)CrossRefGoogle Scholar
  83. [83]
    Bouhacina T, Aimé J, Gauthier S, Michel D, Heroguez V. Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys Rev B 56(12): 7694–7703 (1997)CrossRefGoogle Scholar
  84. [84]
    Briscoe B J, Evans D C B. The shear properties of Langmuir-Blodgett layers. Proc Roy Soc A Math Phys Eng Sci 380(1779): 389–407 (1982)CrossRefGoogle Scholar
  85. [85]
    Chugg K J, Chaudhri M M. Boundary lubrication and shear properties of thin solid films of dioctadecyl dimethyl ammonium chloride (TA 100). J Phys D Appl Phys 26(11): 1993–2000 (1993)CrossRefGoogle Scholar
  86. [86]
    Ingram M, Noles J, Watts R, Harris S, Spikes H A. Frictional properties of automatic transmission fluids: Part I-measurement of friction-sliding speed behaviour. Tribol Trans 54(1): 145–153 (2011)CrossRefGoogle Scholar
  87. [87]
    Campen S, Green J H, Lamb G D, Atkinson D, Spikes H. On the increase in boundary friction with sliding speed. Tribol Lett 48(2): 237–248 (2012)CrossRefGoogle Scholar
  88. [88]
    Drummond C, Israelachvili J, Richetti P. Friction between two weakly adhering boundary lubricated surfaces in water. Phys Rev E 67(6): 066110 (2003)CrossRefGoogle Scholar
  89. [89]
    Mazuyer D, Cayer-Barrioz J, Tonck A, Jarnias F. Friction dynamics of confined weakly adhering boundary layers. Langmuir 24(8): 3857–3866 (2008)CrossRefGoogle Scholar
  90. [90]
    Tománek D, Zhong W, Thomas H. Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys Lett 15(8): 887–892 (1991)CrossRefGoogle Scholar
  91. [91]
    Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J. Velocity dependence of atomic friction. Phys Rev Lett 84(6): 1172–1175 (2000)CrossRefGoogle Scholar
  92. [92]
    Müser M H. Nature of mechanical instabilities and their effect on kinetic friction. Phys Rev Lett 89(22): 224301 (2002)CrossRefGoogle Scholar
  93. [93]
    Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H. Interaction potential and hopping dynamics governing sliding friction. Phys Rev Lett 91(8): 084502 (2003)CrossRefGoogle Scholar
  94. [94]
    Glosli J N, McClelland G M. Molecular dynamics study of sliding friction of ordered organic monolayers. Phys Rev Lett 70(13): 1960–1963 (1993)CrossRefGoogle Scholar
  95. [95]
    Kong Y C, Tildesley D J, Alejandre J. The molecular dynamics simulation of boundary-layer lubrication. Mol Phys 92(1): 7–18 (1997)CrossRefGoogle Scholar
  96. [96]
    Chandross M, Grest G S, Stevens M J. Friction between alkylsilane monolayers: Molecular simulation of ordered monolayers. Langmuir 18(22): 8392–8399 (2002)CrossRefGoogle Scholar
  97. [97]
    Zhang L Z, Leng Y S, Jiang S Y. Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19(23): 9742–9747 (2003)CrossRefGoogle Scholar
  98. [98]
    Chen J Y, Ratera I, Park J Y, Salmeron M. Velocity dependence of friction and hydrogen bonding effects. Phys Rev Lett 96(23): 236102 (2006)CrossRefGoogle Scholar
  99. [99]
    Kapila V, Deymier P A, Raghavan S. Molecular dynamics simulations of friction between alkylsilane monolayers. Modell Simul Mater Sci Eng 14(2): 283–297 (2006)CrossRefGoogle Scholar
  100. [100]
    Ewen J P, Gattinoni C, Morgan N, Spikes H A, Dini D. Non-equilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron-oxide surfaces. iLangmuir 32(18): 4450–4463 (2016)CrossRefGoogle Scholar
  101. [101]
    Müser M. Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys Rev B 84(12): 125419 (2011)CrossRefGoogle Scholar
  102. [102]
    Faraday M. The decomposition of chloride of silver by hydrogen and by zinc. Quart J Liter Sci Arts 8: 374–376 (1820)Google Scholar
  103. [103]
    Ostwald W. The Fundamental Principles of Chemistry. Morse H W, trans. New York (USA): Longman Green, 1909.Google Scholar
  104. [104]
    Bell G. Models for the specific adhesion of cells to cells. Science 200(4342): 618–627 (1978)CrossRefGoogle Scholar
  105. [105]
    Beyer M K, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105(8): 2921–2948 (2005)CrossRefGoogle Scholar
  106. [106]
    Boldyrev V V. Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3): 177–189 (2006)CrossRefGoogle Scholar
  107. [107]
    Kaupp G. Mechanochemistry: The varied applications of mechanical bond-breaking. Cryst Eng Comm 11(3): 388–403 (2009)CrossRefGoogle Scholar
  108. [108]
    James S L Adams C J, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris K D M, Hyett G, Jones W, et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem Soc Rev 41(1): 413–447 (2012)CrossRefGoogle Scholar
  109. [109]
    Ribas-Arino J, Marx D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112(10): 5412–5487 (2012)CrossRefGoogle Scholar
  110. [110]
    Takacs L. The historical development of mechanochemistry. Chem Soc Rev 42(18): 7649–7659 (2013)CrossRefGoogle Scholar
  111. [111]
    Beldon P J, Fábián L, Stein R S, Thirumurugan A, Cheetham A K, Friščić T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed Engl 49(50): 9640–9643 (2010)CrossRefGoogle Scholar
  112. [112]
    Keller D, Bustamante C. The mechanochemistry of molecular motors. Biophys J 78(2): 541–556 (2000)CrossRefGoogle Scholar
  113. [113]
    Greenberg M J, Moore J R. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67(5): 273–285 (2010)CrossRefGoogle Scholar
  114. [114]
    Lenhardt J M, Ogle J W, Ong M T, Choe R, Martinez T J, Craig S L. Reactive cross-talk between adjacent tensiontrapped transition states. J Am Chem Soc 133(10): 3222–3225 (2011)CrossRefGoogle Scholar
  115. [115]
    Craig S L. Mechanochemistry: A tour of force. Nature 487(7406): 176–177 (2012)CrossRefGoogle Scholar
  116. [116]
    Knothe Tate M L, Gunning P W, Sansalone V. Emergence of form from function—Mechanical engineering approaches to probe the role of stem cell mechanoadaptation in sealing cell fate. BioArchitecture 6(5): 85–103 (2016)CrossRefGoogle Scholar
  117. [117]
    Zhu C. Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 42(2): 388–404 (2014)CrossRefGoogle Scholar
  118. [118]
    Black A L, Lenhardt J M, Craig S L. From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21(6): 1655–1663 (2011)CrossRefGoogle Scholar
  119. [119]
    Brantley J N, Wiggins K M, Bielawski C W. Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62(1): 2–12 (2013)CrossRefGoogle Scholar
  120. [120]
    De Simo M, Hilmer F B. Process for stabilizing polymers. U.S. Patent 2085525, Jun. 1937.Google Scholar
  121. [121]
    Morris W J, Schnurmann R. Mechanical degradation of large molecules. Nature 16(4072): 674 (1947)CrossRefGoogle Scholar
  122. [122]
    Marx N, Ponjavic A, Taylor R I, Spikes H A. Study of permanent shear thinning of VM polymer solutions. Tribol Lett 65(3): 106 (2017)CrossRefGoogle Scholar
  123. [123]
    Sohma J. Mechanochemistry of polymers. Prog Polym Sci 14(4): 451–596 (1989)CrossRefGoogle Scholar
  124. [124]
    De Gennes P G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60(12): 5030–5042 (1974)CrossRefGoogle Scholar
  125. [125]
    Odell J A, Keller A, Rabin Y. Flow-induced scission of isolated macromolecules. J Chem Phys 88(6): 4022–4028 (1988)CrossRefGoogle Scholar
  126. [126]
    Odell J A, Muller A J, Narh K A, Keller A. Degradation of polymer solutions in extensional flows. Macromolecules 23(12): 3092–3103 (1990)CrossRefGoogle Scholar
  127. [127]
    Gosvami N N, Bares J A, Mangolini F, Konicek A R, Yablon D G, Carpick R W. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230): 102–106 (2015)CrossRefGoogle Scholar
  128. [128]
    Adams H L, Garvey M T, Ramasamy U S, Ye Z J, Martini A, Tysoe W T. Shear-induced mechanochemistry: pushing molecules around. J Phys Chem C 119(13): 7115–7123 (2015)CrossRefGoogle Scholar
  129. [129]
    Adams H, Miller B P, Kotvis P V, Furlong O J, Martini A, Tysoe W T. In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol Lett 62(1): 12 (2016)CrossRefGoogle Scholar
  130. [130]
    Felts J R, Oyer A J, Hernández S C, Whitener Jr K E, Robinson J T, Walton S G, Sheehan P E. Direct mechanochemical cleavage of functional groups from graphene. Nat Commun 6: 6467 (2015)CrossRefGoogle Scholar
  131. [131]
    Yeon J, He X, Martini A, Kim S H. Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl Mater Interfaces 9(3): 3142–3148 (2017)CrossRefGoogle Scholar
  132. [132]
    He X, Kim S H. Mechanochemistry of physisorbed molecules at tribological interfaces: molecular structure dependence of tribochemical polymerization. Langmuir 33(11): 2717–2724 (2017)CrossRefGoogle Scholar
  133. [133]
    Brizmer V, Matta C, Nedelcu I, Morales-Espejel G E. The influence of tribolayer formation on tribological performance of rolling/sliding contacts. Tribol Lett 65(2): 57 (2017)CrossRefGoogle Scholar
  134. [134]
    Akchurin A, Bosman R. A deterministic stress-activated model for tribo-film growth and wear simulation. Tribol Lett 65(2): 59 (2017)CrossRefGoogle Scholar
  135. [135]
    Zhang J, Spikes H. On the mechanism of ZDDP antiwear film formation. Tribol Lett 63(2): 24 (2016)CrossRefGoogle Scholar
  136. [136]
    Dickinson J T, Park N S, Kim M W, Langford S C. A scanning force microscope study of a tribochemical system: stress-enhanced dissolution. Tribol Lett 3(1): 69–80 (1997)CrossRefGoogle Scholar
  137. [137]
    Kopta S, Salmeron M. The atomic scale origin of wear on mica and its contribution to friction. J Chem Phys 113(18): 8249–8252 (2000)CrossRefGoogle Scholar
  138. [138]
    Gotsmann B, Lantz M A. Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101(12): 125501 (2008)CrossRefGoogle Scholar
  139. [139]
    Jacobs T D B, Carpick R W. Nanoscale wear as a stressassisted chemical reaction. Nat Nanotechnol 8(2): 108–112 (2013)CrossRefGoogle Scholar
  140. [140]
    Ewen J P, Gattinoni C, Morgan N, Spikes H A, Dini D. Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32(18): 4450–4463 (2016)CrossRefGoogle Scholar
  141. [141]
    Mott N F. Slip at grain boundaries and grain growth in metals. Proc Phys Soc 60(4): 391–394 (1948)MATHCrossRefGoogle Scholar
  142. [142]
    Gnecco E, Bennewitz R, Socoliuc A, Meyer E. Friction and wear on the atomic scale. Wear 254(9): 859–862 (2003)CrossRefGoogle Scholar
  143. [143]
    Konda S S M, Brantley J N, Bielawski C W, Makarov D E. Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135(16): 164103 (2011)CrossRefGoogle Scholar
  144. [144]
    Furlong O J, Manzi S J, Martini A, Tysoe W T. Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol Lett 60(2): 21 (2015)CrossRefGoogle Scholar
  145. [145]
    Tysoe W. On stress-induced tribochemical reaction rates. Tribol Lett 65(2): 48 (2017)CrossRefGoogle Scholar
  146. [146]
    Zhang J, Tan A, Spikes H. Effect of base oil structure on elastohydrodynamic friction. Tribol Lett 65(1): 13 (2017)CrossRefGoogle Scholar
  147. [147]
    Galmiche B, Ponjavic A, Wong J S S. Flow measurements of a polyphenyl ether oil in an elastohydrodynamic contact. J Phys Condens Matter 28(13): 134005 (2016)CrossRefGoogle Scholar
  148. [148]
    Wool R S, Bretzlaff R Y, Li B H, Wang C H, Boyd R H. Infrared and Raman spectroscopy of stressed polyethylene. J Polym Sci Part B Polym Phys 24(5): 1039–1066 (1986)CrossRefGoogle Scholar

Copyright information

© The author(s) 2017

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Tribology Group, Department of Mechanical EngineeringImperial CollegeLondonUK

Personalised recommendations