Friction

, Volume 5, Issue 1, pp 115–122 | Cite as

Importance of surface oxide for the tribology of a Zr-based metallic glass

  • S. J. Kang
  • K. T. Rittgen
  • S. G. Kwan
  • H. W. Park
  • R. Bennewitz
  • A. Caron
Open Access
Research Article

Abstract

Thermally grown surface oxide layers dominate the single-asperity tribological behavior of a Zr60Cu30Al10 glass. Increase in oxidation time leads to an increased contribution of shearing and a corresponding decreased contribution of ploughing to friction. This change in the dominating friction and wear mechanism results in an overall minor decrease of the friction coefficient of oxidized surfaces compared to the metallic glass sample with native surface oxide. Our results demonstrate the importance of creating a stable oxide layer for practical applications of metallic glasses in micro-devices involving sliding contact.

Keywords

metallic glasses surface oxide friction wear nanotribology atomic force microscopy 

Notes

Acknowledgments

S. J. K., A. C. and, R. B. are grateful to Prof. E. Arzt for his continuous interest and support of this work. A. C. and S. J. K. were supported by the German Science Foundation (DFG). The authors thank Dr. M. Koch (INM) for his support by providing high-resolution TEM results.

References

  1. [1]
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48(1): 279–306 (2000)CrossRefGoogle Scholar
  2. [2]
    Imura T, Hasegawa K, Moori M, Nishiwaki T, Takagi M, Kawamura Y. Cyclic deformation and tribological behavior of an amorphous iron-based alloy film. Mater Sci Eng A 133(1): 332–336 (1991)CrossRefGoogle Scholar
  3. [3]
    Morris D G. The properties of dynamically compacted Metglas® 2826. J Mater Sci 17(6): 1789–1794 (1982)CrossRefGoogle Scholar
  4. [4]
    Lee D E, Evett J E. Sliding friction and structural relaxation of metallic glasses. Acta Metall 32(7): 1035–1043 (1984)CrossRefGoogle Scholar
  5. [5]
    Kwon D H, Lee K M, Park E S, Kim H J, Bae J C, Huh M Y. Wear behaviors of bulk metallic glass alloy and hardened steel having the same hardness value. J Alloys Comp 536S: S99–S102 (2012)CrossRefGoogle Scholar
  6. [6]
    Tam C Y, Shek C H. Abrasive wear of Cu60Zr30Ti10 bulk metallic glass. Mater Sci Eng A 384(1-2): 138–142 (2004)CrossRefGoogle Scholar
  7. [7]
    Yoon S, Lee C, Choi H. Evaluation of the effects of the crystallinity of kinetically sprayed Ni-Ti-Zr-Si-Sn bulk metallic glass on the scratch response. Mat Sci Eng A 449–551: 285–289 (2007)CrossRefGoogle Scholar
  8. [8]
    Boswell PG. The wear resistance of liquid quenched metallic glass. J Mater Sci 14(6): 1505–1507 (1979)CrossRefGoogle Scholar
  9. [9]
    Kishore U S, Chandran N, Chattopadhyay K. On the wear mechanism of iron and nickel based transition metal-metalloid metallic glasses. Acta Metall 35(7): 1463–1473 (1987)CrossRefGoogle Scholar
  10. [10]
    Fu X-Y, Kasai T, Falk M L, Rigney D A. Sliding behavior of metallic glass: Part I. Experimental investigations. Wear 250(1–2): 409–419 (2001)Google Scholar
  11. [11]
    Fu X-Y, Kasai T, Falk M L, Rigney D A. Sliding behaior of metallic glass: Part II. Computer simulations. Wear 250(1–2): 420–430 (2001)Google Scholar
  12. [12]
    Ishida M, Takeda H, Watanabe D, Amiya K, Nishiyama N, Kita K, Saotome Y, Inoue A. Fillability and imprintability of high-strength Ni-based bulk metallic glass prepared by the precision die-casting technique. Mater Trans 45(4): 1239–1244 (2004)CrossRefGoogle Scholar
  13. [13]
    Sharma P, Zhang W, Amiya K, Kimura H, Inoue A. Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. J Nanosci Nanotechnol 5(3): 420–424 (2005).CrossRefGoogle Scholar
  14. [14]
    Schroers J. Processing of bulk metallic glass. Adv Mater 22(14): 1566–1597 (2010)CrossRefGoogle Scholar
  15. [15]
    Caron A, Sharma P, Shluger A, Fecht H-J, Louzguine-Luzguin D V, Inoue A. Effect of surface oxidation on the nm-scale wear behavior of a metallic glass. J Appl Phys 109(8): 083515 (2011)CrossRefGoogle Scholar
  16. [16]
    Caron A, Louzguine-Luzguin D V, Bennewitz R. Structure vs chemistry: Friction and wear of Pt-based metallic surfaces. ACS Appl Mater Interf 5(21): 11341–11347 (2013)CrossRefGoogle Scholar
  17. [17]
    Suzuki S, Osaki H, Ando E. Materialistic difference in macroscopic friction coefficients of sputtered oxide thin films deposited on glass. Jpn J Appl Phys 35(3): 1862–1867 (1996)CrossRefGoogle Scholar
  18. [18]
    Wang D, Tan H, Li Y. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system–A metallographic way t pinpont the best glass forming alloys. Acta Mater 53(10): 2969–2979 (2005)CrossRefGoogle Scholar
  19. [19]
    Inoue A, Negishi T, Kimura H M, Zhang T, Yavari A R. Mater Trans 39(2): 318–321 (1998)Google Scholar
  20. [20]
    Meyer E, Overney R M, Dransfeld K, Gyalog T. Friction and Rheology on the Nanometer Scale. Singapore: World Scientific, 1998.CrossRefGoogle Scholar
  21. [21]
    Caron A, Qin C L, Gu L, González S, Shluger A, Fecht H-J, Louzguine-Luzguin D V, Inoue A. Structure and nanomechanical characterisitcs of surface oxide ayers on a metallic glass. Nanotechnology 22(9): 095704 (2011)CrossRefGoogle Scholar
  22. [22]
    Louzguine-Luzgin D V, Chen C L, Lin L Y, Wang Z C, Ketov S V, Miyama M J, Trifonov A S, Lubenchenko A V, Ikuhara Y. Bulk metallic glass surface native oxide: Its atomic structure, growth rate and electrical properties. Acta Mater 97: 282–290 (2015)CrossRefGoogle Scholar
  23. [23]
    Bowden FP, Tabor D. The Friction and Lubrication of Solids. Oxford (UK): Oxford University Press, 1950.MATHGoogle Scholar
  24. [24]
    Louzguine-Luzgin D V, Nguyen H K, Nakajima K, Ketov S V, Trifonov A S. A study of the nanscale and atomic scale wear resistance of metallic glasses. Materials Lett 185: 54–58 (2016)CrossRefGoogle Scholar
  25. [25]
    Rabinowicz E. Friction and Wear of Materials, 2nd Edition. New York (USA): John Wiley & Sons Inc., 1995.Google Scholar
  26. [26]
    Zhang W, Ji G, Bu A, Zhang B. Tailoring the valence band offset of Al2O3 on epitaxial GaAs1-ySby with tunable antimony composition. ACS Appl Mat Interf 7(51): 28624–28631 (2015)CrossRefGoogle Scholar
  27. [27]
    Tocha E, Schoenherr H, Vansco G J. Influence of grain size and humidity on the nanotribological properties of wearresistant nanostructured ZrO2 coating: An atomic force microscopy study. J Am Ceram Soc 88(9): 2498–2503 (2005)CrossRefGoogle Scholar
  28. [28]
    Tocha E, Pasaribu H R, Schipper D J, Schoenherr H, Vansco G J. Low friction in CuO-dopped yttria-stabilized tetragonal zirconia ceramics: A complementary macro- and nanotribology study. J Am Ceram Soc 91(5): 1646–1652 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. J. Kang
    • 1
    • 2
  • K. T. Rittgen
    • 1
    • 3
  • S. G. Kwan
    • 2
  • H. W. Park
    • 2
  • R. Bennewitz
    • 1
    • 3
  • A. Caron
    • 1
    • 2
  1. 1.NM - Leibniz Institute for New MaterialsCampus D2.2SaarbrückenGermany
  2. 2.KoreaTechKorea University of Technology and EducationChungnam ProvinceRepublic of Korea
  3. 3.Department of PhysicsSaarland UniversitySaarbrückenGermany

Personalised recommendations