Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine?

Abstract

Purpose of review

Drug hypersensitivity represents an important problem for health care and patient’s management, as they limit therapeutic decisions, hampering treatment and being a frequent cause of complications during hospitalization, and, in some instances, being life threatening. The risk of developing drug hypersensitivity reactions depends not only on some specific individual characteristics but it seems to be also influenced by genetic factors. The identification of such factors could conceivably help to their diagnosis and prevention, avoiding therapeutic failure and leading to the development of precision medicine.

Recent findings

Despite latest research on this issue confirming the participation of certain HLA alleles in T cell–mediated reactions, there is a lack of reliable genetic markers for most types of reactions. Nevertheless, recently developed technologies, including both DNA and RNA sequencing, are providing promising results to decipher underlying mechanisms and to identify prognostic and diagnostic biomarkers.

Summary

We summarize current data on the genetics of drug hypersensitivity reactions and include information concerning pharmacogenomic testing and new available technological approaches that could be applied for their study. Although their use on this area of research is still in its infancy, they are expected to provide crucial data that could be used in translational and precision medicine.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    International drug monitoring: the role of national centres. Report of a WHO meeting World Health Organ Tech Rep Ser 1972;498:1–25.

  2. 2.

    Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255–9. https://doi.org/10.1016/S0140-6736(00)02799-9.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56(9):813–24. https://doi.org/10.1034/j.1398-9995.2001.t01-1-00001.x.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Saff RR, Li Y, Santhanakrishnan N, Camargo CA, Jr., Blumenthal KG, Zhou L et al. Identification of inpatient allergic drug reactions using ICD-9-CM codes. J Allergy Clin Immunol Pract. 2019;7(1):259–64 e1. doi:https://doi.org/10.1016/j.jaip.2018.07.022.

  5. 5.

    Blanca M, Romano A, Torres MJ, Fernandez J, Mayorga C, Rodriguez J, et al. Update on the evaluation of hypersensitivity reactions to betalactams. Allergy. 2009;64(2):183–93. https://doi.org/10.1111/j.1398-9995.2008.01916.x.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Roujeau JC, Haddad C, Paulmann M, Mockenhaupt M. Management of nonimmediate hypersensitivity reactions to drugs. Immunol Allergy Clin N Am. 2014;34(3):473–87, vii. https://doi.org/10.1016/j.iac.2014.04.012.

  7. 7.

    Romano A, Blanca M, Torres MJ, Bircher A, Aberer W, Brockow K, et al. Diagnosis of nonimmediate reactions to beta-lactam antibiotics. Allergy. 2004;59(11):1153–60. https://doi.org/10.1111/j.1398-9995.2004.00678.x.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Romano A, Atanaskovic-Markovic M, Barbaud A, Bircher AJ, Brockow K, Caubet JC, et al. Towards a more precise diagnosis of hypersensitivity to beta-lactams - an EAACI position paper. Allergy. 2020;75(6):1300–15. https://doi.org/10.1111/all.14122.

    Article  PubMed  Google Scholar 

  9. 9.

    Torres MJ, Celik GE, Whitaker P, Atanaskovic-Markovic M, Barbaud A, Bircher A, et al. A EAACI drug allergy interest group survey on how European allergy specialists deal with beta-lactam allergy. Allergy. 2019;74(6):1052–62. https://doi.org/10.1111/all.13721.

    Article  PubMed  Google Scholar 

  10. 10.

    • Doña I, Perez-Sanchez N, Eguiluz-Gracia I, Munoz-Cano R, Bartra J, Torres MJ et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy. 2020;75(3):561–75. doi:https://doi.org/10.1111/all.14032. A recently published paper describing current knowledge on hypersensitivity to non-steroidal anti-inflammatory drugs and describing new phenotypes not included in the classification by the European Academy of Allergy and Clinical Immunology.

  11. 11.

    • Kowalski ML, Asero R, Bavbek S, Blanca M, Blanca-Lopez N, Bochenek G et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 2013;68(10):1219–32. doi:https://doi.org/10.1111/all.12260. Current classification of nonsteroidal anti-inflammatory drugs hypersensitivity by the European Academy of Allergy and Clinical Immunology.

  12. 12.

    Lauschke VM, Ingelman-Sundberg M. The importance of patient-specific factors for hepatic drug response and toxicity. Int J Mol Sci. 2016;17(10). https://doi.org/10.3390/ijms17101714.

  13. 13.

    •• Oussalah A, Mayorga C, Blanca M, Barbaud A, Nakonechna A, Cernadas J et al. Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review. Allergy. 2016;71(4):443–62. doi:https://doi.org/10.1111/all.12821. A PRISMA-compliant systematic review describing genetic association studies in immediate reactions to drugs and difficulties to identify an appropiate genetic marker.

  14. 14.

    Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharm J. 2013;13(1):1–11. https://doi.org/10.1038/tpj.2012.45.

    CAS  Article  Google Scholar 

  15. 15.

    Jurado-Escobar R, Perkins JR, Garcia-Martin E, Isidoro-Garcia M, Dona I, Torres MJ, et al. Update on the genetic basis of drug hypersensitivity reactions. J Investig Allergol Clin Immunol. 2017;27(6):336–45. https://doi.org/10.18176/jiaci.0199.

    CAS  Article  PubMed  Google Scholar 

  16. 16.•

    Collins H, Calvo S, Greenberg K, Forman Neall L, Morrison S. Information needs in the precision medicine era: how genetics home reference can help. Interact J Med Res. 2016; 5(2): e13. doi: https://doi.org/10.2196/ijmr.5199. A description of the information on precision medicine available in the Genetics Home Reference website.

  17. 17.

    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234–8. https://doi.org/10.1038/306234a0.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet. 2004;36(10):1045–51. https://doi.org/10.1038/ng1433.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    •• Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22. doi:https://doi.org/10.1016/j.ajhg.2017.06.005. A nicely written paper describing the basis of genome wide association studies, including their evolution over recent years, and their utility in human diseases.

  20. 20.

    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106(23):9362–7. https://doi.org/10.1073/pnas.0903103106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7. https://doi.org/10.1016/j.cell.2010.03.032.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Teo YY. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol. 2008;19(2):133–43. https://doi.org/10.1097/MOL.0b013e3282f5dd77.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360(17):1696–8. https://doi.org/10.1056/NEJMp0806284.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. https://doi.org/10.1038/35057062.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. doi:https://doi.org/10.1126/science.1058040. The description of the human genome sequence.

  26. 26.

    Schloss JA. How to get genomes at one ten-thousandth the cost. Nat Biotechnol. 2008;26(10):1113–5. https://doi.org/10.1038/nbt1008-1113.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    •• McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A et al. New technologies for DNA analysis--a review of the READNA Project. N Biotechnol. 2016;33(3):311–30. doi:https://doi.org/10.1016/j.nbt.2015.10.003. A complete description of recently developed technologies for DNA analysis.

  28. 28.

    van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34(9):666–81. https://doi.org/10.1016/j.tig.2018.05.008.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–62. https://doi.org/10.1007/s00439-015-1631-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Persani L, de Filippis T, Colombo C, Gentilini DGENETICSINENDOCRINOLOGY. Genetic diagnosis of endocrine diseases by NGS: novel scenarios and unpredictable results and risks. Eur J Endocrinol. 2018;179(3):R111–R23. https://doi.org/10.1530/EJE-18-0379.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8. https://doi.org/10.1073/pnas.1418631112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    •• Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. doi:https://doi.org/10.1038/nature19057. The description of genetic variability in human exoma.

  33. 33.

    • Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018;12(1):26. doi:https://doi.org/10.1186/s40246-018-0157-3. An analysis of rare and common genetic variants through a computational prediction model optimized for pharmacogenetic assessments.

  34. 34.

    Cornejo-Garcia JA, Romano A, Gueant-Rodriguez RM, Oussalah A, Blanca-Lopez N, Gaeta F, et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharm J. 2016;16(1):79–82. https://doi.org/10.1038/tpj.2015.24.

    CAS  Article  Google Scholar 

  35. 35.

    Cornejo-Garcia JA, Gueant-Rodriguez RM, Torres MJ, Blanca-Lopez N, Tramoy D, Romano A, et al. Biological and genetic determinants of atopy are predictors of immediate-type allergy to betalactams, in Spain. Allergy. 2012;67(9):1181–5. https://doi.org/10.1111/j.1398-9995.2012.02867.x.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Gueant-Rodriguez RM, Romano A, Beri-Dexheimer M, Viola M, Gaeta F, Gueant JL. Gene-gene interactions of IL13 and IL4RA variants in immediate allergic reactions to betalactam antibiotics. Pharmacogenet Genomics. 2006;16(10):713–9. https://doi.org/10.1097/01.fpc.0000230409.00276.44.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bursztejn AC, Romano A, Gueant-Rodriguez RM, Cornejo JA, Oussalah A, Chery C, et al. Allergy to betalactams and nucleotide-binding oligomerization domain (NOD) gene polymorphisms. Allergy. 2013;68(8):1076–80. https://doi.org/10.1111/all.12196.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Gueant-Rodriguez RM, Gueant JL, Viola M, Tramoy D, Gaeta F, Romano A. Association of tumor necrosis factor-alpha -308G>A polymorphism with IgE-mediated allergy to betalactams in an Italian population. Pharm J. 2008;8(2):162–8. https://doi.org/10.1038/sj.tpj.6500456.

    CAS  Article  Google Scholar 

  39. 39.

    Qiao HL, Yang J, Zhang YW. Relationships between specific serum IgE, cytokines and polymorphisms in the IL-4, IL-4Ralpha in patients with penicillins allergy. Allergy. 2005;60(8):1053–9. https://doi.org/10.1111/j.1398-9995.2005.00816.x.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Yang J, Qiao HL, Dong ZM. Polymorphisms of IL-13 and IL-4-IL-13-SNPs in patients with penicillin allergies. Eur J Clin Pharmacol. 2005;61(11):803–9. https://doi.org/10.1007/s00228-005-0047-1.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Guglielmi L, Fontaine C, Gougat C, Avinens O, Eliaou JF, Guglielmi P, et al. IL-10 promoter and IL4-Ralpha gene SNPs are associated with immediate beta-lactam allergy in atopic women. Allergy. 2006;61(8):921–7. https://doi.org/10.1111/j.1398-9995.2006.01067.x.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Qiao HL, Wen Q, Gao N, Tian X, Jia LJ. Association of IL-10 level and IL-10 promoter SNPs with specific antibodies in penicillin-allergic patients. Eur J Clin Pharmacol. 2007;63(3):263–9. https://doi.org/10.1007/s00228-006-0245-5.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Gao N, Qiao HL, Jia LJ, Tian X, Zhang YW. Relationships between specific serum IgE, IgG, IFN-gamma level and IFN-gamma, IFNR1 polymorphisms in patients with penicillin allergy. Eur J Clin Pharmacol. 2008;64(10):971–7. https://doi.org/10.1007/s00228-008-0486-6.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Huang CZ, Yang J, Qiao HL, Jia LJ. Polymorphisms and haplotype analysis of IL-4Ralpha Q576R and I75V in patients with penicillin allergy. Eur J Clin Pharmacol. 2009;65(9):895–902. https://doi.org/10.1007/s00228-009-0659-y.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ming L, Wen Q, Qiao HL, Dong ZM. Interleukin-18 and IL18 -607A/C and -137G/C gene polymorphisms in patients with penicillin allergy. J Int Med Res. 2011;39(2):388–98. https://doi.org/10.1177/147323001103900206.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Huang CZ, Zou D, Yang J, Qiao HL. Polymorphisms of STAT6 and specific serum IgE levels in patients with penicillin allergy. Int J Clin Pharmacol Ther. 2012;50(7):461–7. https://doi.org/10.5414/CP201691.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Singvijarn P, Manuyakorn W, Mahasirimongkol S, Wattanapokayakit S, Inunchot W, Wichukchinda N et al. Association of HLA genotypes with Beta-lactam antibiotic hypersensitivity in children. Asian Pac J Allergy Immunol. 2019. doi:https://doi.org/10.12932/AP-271118-0449.

  48. 48.

    • Gueant JL, Romano A, Cornejo-Garcia JA, Oussalah A, Chery C, Blanca-Lopez N et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol. 2015;135(1):253–9. doi:https://doi.org/10.1016/j.jaci.2014.07.047. The only currently available genome wide association study performed on immediate allergy to betalactam antibiotics.

  49. 49.

    Perkins JR, Acosta-Herrera M, Plaza-Seron MC, Jurado-Escobar R, Dona I, Garcia-Martin E, et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharm J. 2019;19(2):191–9. https://doi.org/10.1038/s41397-018-0038-0.

    CAS  Article  Google Scholar 

  50. 50.

    Kim JH, Park BL, Cheong HS, Bae JS, Park JS, Jang AS, et al. Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma. PLoS One. 2010;5(11):e13818. https://doi.org/10.1371/journal.pone.0013818.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Cornejo-Garcia JA, Flores C, Plaza-Seron MC, Acosta-Herrera M, Blanca-Lopez N, Dona I, et al. Variants of CEP68 gene are associated with acute urticaria/angioedema induced by multiple non-steroidal anti-inflammatory drugs. PLoS One. 2014;9(3):e90966. https://doi.org/10.1371/journal.pone.0090966.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Dona I, Jurado-Escobar R, Perkins JR, Ayuso P, Plaza-Seron MC, Perez-Sanchez N, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti-inflammatory drug-induced urticaria. Allergy. 2019;74(6):1135–44. https://doi.org/10.1111/all.13725.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Ayuso P, Plaza-Seron Mdel C, Blanca-Lopez N, Dona I, Campo P, Canto G, et al. Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics. 2015;16(8):825–39. https://doi.org/10.2217/pgs.15.43.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol. 2000;23(3):290–6. https://doi.org/10.1165/ajrcmb.23.3.4051.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Van Sambeek R, Stevenson DD, Baldasaro M, Lam BK, Zhao J, Yoshida S, et al. 5′ flanking region polymorphism of the gene encoding leukotriene C4 synthase does not correlate with the aspirin-intolerant asthma phenotype in the United States. J Allergy Clin Immunol. 2000;106(1 Pt 1):72–6. https://doi.org/10.1067/mai.2000.107603.

    Article  PubMed  Google Scholar 

  56. 56.

    Kawagishi Y, Mita H, Taniguchi M, Maruyama M, Oosaki R, Higashi N, et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol. 2002;109(6):936–42. https://doi.org/10.1067/mai.2002.124466.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Choi JH, Park HS, Oh HB, Lee JH, Suh YJ, Park CS, et al. Leukotriene-related gene polymorphisms in ASA-intolerant asthma: an association with a haplotype of 5-lipoxygenase. Hum Genet. 2004;114(4):337–44. https://doi.org/10.1007/s00439-004-1082-1.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Isidoro-Garcia M, Davila I, Moreno E, Lorente F, Gonzalez-Sarmiento R. Analysis of the leukotriene C4 synthase A-444C promoter polymorphism in a Spanish population. J Allergy Clin Immunol. 2005;115(1):206–7. https://doi.org/10.1016/j.jaci.2004.08.033.

    Article  PubMed  Google Scholar 

  59. 59.

    Cornejo-Garcia JA, Jagemann LR, Blanca-Lopez N, Dona I, Flores C, Gueant-Rodriguez RM, et al. Genetic variants of the arachidonic acid pathway in non-steroidal anti-inflammatory drug-induced acute urticaria. Clin Exp Allergy. 2012;42(12):1772–81. https://doi.org/10.1111/j.1365-2222.2012.04078.x.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Park BL, Park SM, Park JS, Uh ST, Choi JS, Kim YH, et al. Association of PTGER gene family polymorphisms with aspirin intolerant asthma in Korean asthmatics. BMB Rep. 2010;43(6):445–9. https://doi.org/10.5483/bmbrep.2010.43.6.445.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Kim SH, Oh JM, Kim YS, Palmer LJ, Suh CH, Nahm DH, et al. Cysteinyl leukotriene receptor 1 promoter polymorphism is associated with aspirin-intolerant asthma in males. Clin Exp Allergy. 2006;36(4):433–9. https://doi.org/10.1111/j.1365-2222.2006.02457.x.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Park JS, Chang HS, Park CS, Lee JH, Lee YM, Choi JH, et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics. 2005;15(7):483–92. https://doi.org/10.1097/01.fpc.0000166456.84905.a0.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Kohyama K, Hashimoto M, Abe S, Kodaira K, Yukawa T, Hozawa S, et al. Thromboxane A2 receptor +795T>C and chemoattractant receptor-homologous molecule expressed on Th2 cells -466T>C gene polymorphisms in patients with aspirin-exacerbated respiratory disease. Mol Med Rep. 2012;5(2):477–82. https://doi.org/10.3892/mmr.2011.680.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Palikhe NS, Kim SH, Lee HY, Kim JH, Ye YM, Park HS. Association of thromboxane A2 receptor (TBXA2R) gene polymorphism in patients with aspirin-intolerant acute urticaria. Clin Exp Allergy. 2011;41(2):179–85. https://doi.org/10.1111/j.1365-2222.2010.03642.x.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Agundez JA, Ayuso P, Cornejo-Garcia JA, Blanca M, Torres MJ, Dona I, et al. The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs. PLoS One. 2012;7(11):e47571. https://doi.org/10.1371/journal.pone.0047571.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ferreira Vasconcelos LM, Rodrigues RO, Albuquerque AA, Barroso GD, Sasahara GL, Severo Ferreira JF, et al. Polymorphism of IL10, IL4, CTLA4, and DAO genes in cross-reactive nonsteroidal anti-inflammatory drug hypersensitivity. J Clin Pharmacol. 2018;58(1):107–13. https://doi.org/10.1002/jcph.986.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Ayuso P, Plaza-Seron Mdel C, Dona I, Blanca-Lopez N, Campo P, Cornejo-Garcia JA, et al. Association study of genetic variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A genes in NSAIDs-induced urticaria and/or angioedema patients. Pharmacogenet Genomics. 2015;25(12):618–21. https://doi.org/10.1097/FPC.0000000000000179.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Kim LH, Chang H, Namgoong S, Kim JO, Cheong HS, Lee SG, et al. Genetic variants of the gasdermin B gene associated with the development of aspirin-exacerbated respiratory diseases. Allergy Asthma Proc. 2017;38(1):4–12. https://doi.org/10.2500/aap.2017.38.4014.

    Article  PubMed  Google Scholar 

  69. 69.

    Dekker JW, Nizankowska E, Schmitz-Schumann M, Pile K, Bochenek G, Dyczek A, et al. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy. 1997;27(5):574–7.

    CAS  Article  Google Scholar 

  70. 70.

    Choi JH, Lee KW, Oh HB, Lee KJ, Suh YJ, Park CS, et al. HLA association in aspirin-intolerant asthma: DPB1*0301 as a strong marker in a Korean population. J Allergy Clin Immunol. 2004;113(3):562–4. https://doi.org/10.1016/j.jaci.2003.12.012.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Park BL, Kim TH, Kim JH, Bae JS, Pasaje CF, Cheong HS, et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum Genet. 2013;132(3):313–21. https://doi.org/10.1007/s00439-012-1247-2.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Blanca M, Oussalah A, Cornejo-Garcia JA, Blanca-Lopez N, Gueant-Rodriguez RM, Dona I, et al. GNAI2 variants predict nonsteroidal anti-inflammatory drug hypersensitivity in a genome-wide study. Allergy. 2020;75(5):1250–3. https://doi.org/10.1111/all.14100.

    Article  PubMed  Google Scholar 

  73. 73.

    Cornejo-Garcia JA, Perkins JR, Jurado-Escobar R, Garcia-Martin E, Agundez JA, Viguera E, et al. Pharmacogenomics of prostaglandin and leukotriene receptors. Front Pharmacol. 2016;7:316. https://doi.org/10.3389/fphar.2016.00316.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Amo G, Marti M, Garcia-Menaya JM, Cordobes C, Cornejo-Garcia JA, Blanca-Lopez N, et al. Identification of novel biomarkers for drug hypersensitivity after sequencing of the promoter area in 16 genes of the vitamin D pathway and the high-affinity IgE receptor. Front Genet. 2019;10:582. https://doi.org/10.3389/fgene.2019.00582.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    • Ensina LF, Martin RP, Filippelli-Silva R, Veronez CL, Sole D, Pesquero JB. Angioedema-induced by nonsteroidal anti-inflammatory drugs: a genotype-phenotype correlation in a Brazilian population. J Investig Allergol Clin Immunol. 2019;29(4):305–7. doi:https://doi.org/10.18176/jiaci.0382. The only available study using DNA massive sequencing in drug hypersensitivity.

  76. 76.

    Satapornpong P, Jinda P, Jantararoungtong T, Koomdee N, Chaichan C, Pratoomwun J, et al. Genetic diversity of HLA class I and class II alleles in Thai populations: contribution to genotype-guided therapeutics. Front Pharmacol. 2020;11:78. https://doi.org/10.3389/fphar.2020.00078.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    •• Oussalah A, Yip V, Mayorga C, Blanca M, Barbaud A, Nakonechna A et al. Genetic variants associated with T cell-mediated cutaneous adverse drug reactions: a PRISMA-compliant systematic review-An EAACI position paper. Allergy. 2020;75(5):1069–98. doi:https://doi.org/10.1111/all.14174. A recent PRISMA-compliant systematic review describing genetic association studies in non-immediate reactions to drugs and difficulties to identify an appropiate genetic marker.

  78. 78.

    Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet. 2011;12:118. https://doi.org/10.1186/1471-2350-12-118.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18(2):99–107. https://doi.org/10.1097/FPC.0b013e3282f3ef9c.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Goncalo M, Coutinho I, Teixeira V, Gameiro AR, Brites MM, Nunes R, et al. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol. 2013;169(3):660–5. https://doi.org/10.1111/bjd.12389.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S, Schmid D, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006;55(1):17–25. https://doi.org/10.2332/allergolint.55.17.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012;129(6):1562–9 e5. https://doi.org/10.1016/j.jaci.2011.12.990.

  83. 83.

    Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486(7404):554–8. https://doi.org/10.1038/nature11147.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH et al. Shared and restricted T cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol. 2011;128(6):1266–76 e11. doi:https://doi.org/10.1016/j.jaci.2011.08.013.

  85. 85.

    Cao ZH, Wei ZY, Zhu QY, Zhang JY, Yang L, Qin SY, et al. HLA-B*58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese. Pharmacogenomics. 2012;13(10):1193–201. https://doi.org/10.2217/pgs.12.89.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. https://doi.org/10.1038/428486a.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006;16(4):297–306. https://doi.org/10.1097/01.fpc.0000199500.46842.4a.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia. 2007;48(5):1015–8. https://doi.org/10.1111/j.1528-1167.2007.01022.x.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Hsiao YH, Hui RC, Wu T, Chang WC, Hsih MS, Yang CH, et al. Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci. 2014;73(2):101–9. https://doi.org/10.1016/j.jdermsci.2013.10.003.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Aggarwal R, Sharma M, Modi M, Garg VK, Salaria M. HLA-B * 1502 is associated with carbamazepine induced Stevens-Johnson syndrome in North Indian population. Hum Immunol. 2014;75(11):1120–2. https://doi.org/10.1016/j.humimm.2014.09.022.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Nguyen DV, Chu HC, Nguyen DV, Phan MH, Craig T, Baumgart K, et al. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy. 2015;5(2):68–77. https://doi.org/10.5415/apallergy.2015.5.2.68.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics. 2008;9(11):1617–22. https://doi.org/10.2217/14622416.9.11.1617.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Ikeda H, Takahashi Y, Yamazaki E, Fujiwara T, Kaniwa N, Saito Y, et al. HLA class I markers in Japanese patients with carbamazepine-induced cutaneous adverse reactions. Epilepsia. 2010;51(2):297–300. https://doi.org/10.1111/j.1528-1167.2009.02269.x.

    Article  PubMed  Google Scholar 

  94. 94.

    Sukasem C, Chaichan C, Nakkrut T, Satapornpong P, Jaruthamsophon K, Jantararoungtong T, et al. Association between HLA-B alleles and carbamazepine-induced maculopapular exanthema and severe cutaneous reactions in Thai patients. J Immunol Res. 2018;2018:2780272. https://doi.org/10.1155/2018/2780272.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin Pharmacol Ther. 2019;106(5):1028–36. https://doi.org/10.1002/cpt.1493.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43. https://doi.org/10.1056/NEJMoa1013297.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20(5):1034–41. https://doi.org/10.1093/hmg/ddq537.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Deng Y, Li S, Zhang L, Jin H, Zou X. Association between HLA alleles and lamotrigine-induced cutaneous adverse drug reactions in Asian populations: a meta-analysis. Seizure. 2018;60:163–71. https://doi.org/10.1016/j.seizure.2018.06.024.

    Article  PubMed  Google Scholar 

  99. 99.

    An DM, Wu XT, Hu FY, Yan B, Stefan H, Zhou D. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a Han Chinese population. Epilepsy Res. 2010;92(2–3):226–30. https://doi.org/10.1016/j.eplepsyres.2010.10.006.

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Shi YW, Min FL, Liu XR, Zan LX, Gao MM, Yu MJ, et al. Hla-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the Han Chinese population. Basic Clin Pharmacol Toxicol. 2011;109(1):42–6. https://doi.org/10.1111/j.1742-7843.2011.00681.x.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Koomdee N, Pratoomwun J, Jantararoungtong T, Theeramoke V, Tassaneeyakul W, Klaewsongkram J, et al. Association of HLA-A and HLA-B Alleles with lamotrigine-induced cutaneous adverse drug reactions in the Thai population. Front Pharmacol. 2017;8:879. https://doi.org/10.3389/fphar.2017.00879.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia. 2013;54(7):1307–14. https://doi.org/10.1111/epi.12217.

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Chang CC, Ng CC, Too CL, Choon SE, Lee CK, Chung WH, et al. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a Malay population. Pharm J. 2017;17(2):170–3. https://doi.org/10.1038/tpj.2016.10.

    CAS  Article  Google Scholar 

  104. 104.

    Manuyakorn W, Likkasittipan P, Wattanapokayakit S, Suvichapanich S, Inunchot W, Wichukchinda N, et al. Association of HLA genotypes with phenytoin induced severe cutaneous adverse drug reactions in Thai children. Epilepsy Res. 2020;162:106321. https://doi.org/10.1016/j.eplepsyres.2020.106321.

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Yampayon K, Sukasem C, Limwongse C, Chinvarun Y, Tempark T, Rerkpattanapipat T, et al. Influence of genetic and non-genetic factors on phenytoin-induced severe cutaneous adverse drug reactions. Eur J Clin Pharmacol. 2017;73(7):855–65. https://doi.org/10.1007/s00228-017-2250-2.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Su SC, Chen CB, Chang WC, Wang CW, Fan WL, Lu LY, et al. HLA Alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin Pharmacol Ther. 2019;105(2):476–85. https://doi.org/10.1002/cpt.1190.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    McCormack M, Urban TJ, Shianna KV, Walley N, Pandolfo M, Depondt C, et al. Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions. Pharmacogenomics. 2012;13(4):399–405. https://doi.org/10.2217/pgs.11.165.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Hetherington S, McGuirk S, Powell G, Cutrell A, Naderer O, Spreen B, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther. 2001;23(10):1603–14. https://doi.org/10.1016/s0149-2918(01)80132-6.

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. https://doi.org/10.1016/s0140-6736(02)07873-x.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2. https://doi.org/10.1016/S0140-6736(02)08158-8.

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics. 2004;14(6):335–42. https://doi.org/10.1097/00008571-200,406,000-00002.

    Article  PubMed  Google Scholar 

  112. 112.

    Hughes AR, Mosteller M, Bansal AT, Davies K, Haneline SA, Lai EH, et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics. 2004;5(2):203–11. https://doi.org/10.1517/phgs.5.2.203.27481.

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Martin AM, Nolan D, Gaudieri S, Almeida CA, Nolan R, James I, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A. 2004;101(12):4180–5. https://doi.org/10.1073/pnas.0307067101.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Stekler J, Maenza J, Stevens C, Holte S, Malhotra U, McElrath MJ, et al. Abacavir hypersensitivity reaction in primary HIV infection. AIDS. 2006;20(9):1269–74. https://doi.org/10.1097/01.aids.0000232234.19006.a2.

    CAS  Article  PubMed  Google Scholar 

  115. 115.

    Agbaji OO, Akanbi MO, Otoh I, Agaba PA, Akinsola R, Okolie V, et al. Absence of human leukocyte antigen-B*57:01 amongst patients on antiretroviral therapy in Nigeria: Implications for use of abacavir. Niger Postgrad Med J. 2019;26(4):195–8. https://doi.org/10.4103/npmj.npmj_75_19.

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Martinez Buitrago E, Onate JM, Garcia-Goez JF, Alvarez J, Lenis W, Sanudo LM, et al. HLA-B*57:01 allele prevalence in treatment-Naive HIV-infected patients from Colombia. BMC Infect Dis. 2019;19(1):793. https://doi.org/10.1186/s12879-019-4415-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Pavlos R, Deshpande P, Chopra A, Leary S, Strautins K, Nolan D, et al. New genetic predictors for abacavir tolerance in HLA-B*57:01 positive individuals. Hum Immunol. 2020;81(6):300–4. https://doi.org/10.1016/j.humimm.2020.02.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Carr DF, Chaponda M, Cornejo Castro EM, Jorgensen AL, Khoo S, Van Oosterhout JJ, et al. CYP2B6 c.983 T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J Antimicrob Chemother. 2014;69(12):3329–34. https://doi.org/10.1093/jac/dku315.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Ciccacci C, Rufini S, Mancinelli S, Buonomo E, Giardina E, Scarcella P, et al. A pharmacogenetics study in Mozambican patients treated with nevirapine: full resequencing of TRAF3IP2 gene shows a novel association with SJS/TEN susceptibility. Int J Mol Sci. 2015;16(3):5830–8. https://doi.org/10.3390/ijms16035830.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Carr DF, Bourgeois S, Chaponda M, Takeshita LY, Morris AP, Castro EM et al. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J Antimicrob Chemother. 2017;72(4):1152–62. doi:https://doi.org/10.1093/jac/dkw545.

  121. 121.

    •• Profaizer T, Pole A, Monds C, Delgado JC, Lazar-Molnar E. Clinical utility of next generation sequencing based HLA typing for disease association and pharmacogenetic testing. Hum Immunol. 2020;81(7):354–60. doi:https://doi.org/10.1016/j.humimm.2020.05.001. A nicely written paper on the utility of massive DNA sequencing in HLA typing for genetic testing.

  122. 122.

    Wang CW, Tassaneeyakul W, Chen CB, Chen WT, Teng YC, Huang CY, et al. Whole genome sequencing identifies genetic variants associated with co-trimoxazole hypersensitivity in Asians. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.08.003.

  123. 123.

    Hoffman JM, Dunnenberger HM, Kevin Hicks J, Caudle KE, Whirl Carrillo M, Freimuth RR, et al. Developing knowledge resources to support precision medicine: principles from the Clinical Pharmacogenetics Implementation Consortium (CPIC). J Am Med Inform Assoc. 2016;23(4):796–801. https://doi.org/10.1093/jamia/ocw027.

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    •• Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19(2):215–23. doi:https://doi.org/10.1038/gim.2016.87. A complete description of standards for clinical genetic testing.

  125. 125.

    Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. The Clinical Pharmacogenetics Implementation Consortium: 10 years later. Clin Pharmacol Ther. 2020;107(1):171–5. https://doi.org/10.1002/cpt.1651.

    Article  PubMed  Google Scholar 

  126. 126.

    Ke CH, Chung WH, Tain YL, Huang YB, Wen YH, Chuang HY, et al. Utility of human leukocyte antigen-B*58: 01 genotyping and patient outcomes. Pharmacogenet Genomics. 2019;29(1):1–8. https://doi.org/10.1097/FPC.0000000000000359.

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Park DJ, Kang JH, Lee JW, Lee KE, Wen L, Kim TJ, et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res. 2015;67(2):280–7. https://doi.org/10.1002/acr.22409.

    Article  Google Scholar 

  128. 128.

    Ko TM, Tsai CY, Chen SY, Chen KS, Yu KH, Chu CS, et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ. 2015;351:h4848. https://doi.org/10.1136/bmj.h4848.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–9. https://doi.org/10.1097/FPC.0b013e328330a3b8.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Ke CH, Chung WH, Wen YH, Huang YB, Chuang HY, Tain YL, et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J Rheumatol. 2017;44(6):835–43. https://doi.org/10.3899/jrheum.151476.

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    • Plumpton CO, Alfirevic A, Pirmohamed M, Hughes DA. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford). 2017;56(10):1729–39. doi:https://doi.org/10.1093/rheumatology/kex253. An example of analysis of cost effectiveness of HLA genotyping before starting drug treatment.

  132. 132.

    Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016;99(1):36–7. https://doi.org/10.1002/cpt.161.

    CAS  Article  PubMed  Google Scholar 

  133. 133.

    Ferrell PB Jr, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9(10):1543–6. https://doi.org/10.2217/14622416.9.10.1543.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–33. https://doi.org/10.1056/NEJMoa1009717.

    CAS  Article  PubMed  Google Scholar 

  135. 135.

    Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, Chang PY, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharm J. 2014;14(3):281–8. https://doi.org/10.1038/tpj.2013.40.

    CAS  Article  Google Scholar 

  136. 136.

    Kim H, Chadwick L, Alzaidi Y, Picker J, Poduri A, Manzi S. HLA-A*31:01 and Oxcarbazepine-Induced DRESS in a Patient With Seizures and Complete DCX Deletion. Pediatrics. 2018;141(Suppl 5):S434–S8. https://doi.org/10.1542/peds.2017-1361.

    Article  PubMed  Google Scholar 

  137. 137.

    Phillips EJ, Sukasem C, Whirl-Carrillo M, Muller DJ, Dunnenberger HM, Chantratita W, et al. Clinical Pharmacogenetics Implementation Consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103(4):574–81. https://doi.org/10.1002/cpt.1004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MT, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96(5):542–8. https://doi.org/10.1038/clpt.2014.159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Tangamornsuksan W, Lohitnavy O, Kongkaew C, Chaiyakunapruk N, Reisfeld B, Scholfield NC, et al. Association of HLA-B*5701 genotypes and abacavir-induced hypersensitivity reaction: a systematic review and meta-analysis. J Pharm Pharm Sci. 2015;18(1):68–76. https://doi.org/10.18433/j39s3t.

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, et al. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis. 2008;46(7):1111–8. https://doi.org/10.1086/529382.

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Moragas M, Belloso WH, Baquedano MS, Gutierrez MI, Bissio E, Larriba JM, et al. Prevalence of HLA-B*57:01 allele in Argentinean HIV-1 infected patients. Tissue Antigens. 2015;86(1):28–31. https://doi.org/10.1111/tan.12575.

    CAS  Article  PubMed  Google Scholar 

  142. 142.

    Arrieta-Bolanos E, Madrigal JA, Marsh SG, Shaw BE, Salazar-Sanchez L. The frequency of HLA-B(*)57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Hum Immunol 2014;75(11):1092–1096. doi:https://doi.org/10.1016/j.humimm.2014.09.011.

  143. 143.

    Small CB, Margolis DA, Shaefer MS, Ross LL. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis. 2017;17(1):256. https://doi.org/10.1186/s12879-017-2331-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Park WB, Choe PG, Song KH, Lee S, Jang HC, Jeon JH, et al. Should HLA-B*5701 screening be performed in every ethnic group before starting abacavir? Clin Infect Dis. 2009;48(3):365–7. https://doi.org/10.1086/595890.

    Article  PubMed  Google Scholar 

  145. 145.

    Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther. 2014;95(5):499–500. https://doi.org/10.1038/clpt.2014.38.

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146.

    • Alfirevic A, Pirmohamed M, Marinovic B, Harcourt-Smith L, Jorgensen AL, Cooper TE. Genetic testing for prevention of severe drug-induced skin rash. Cochrane Database Syst Rev. 2019;7:CD010891. doi:https://doi.org/10.1002/14651858.CD010891.pub2. A nicely written systematic review on the utility of genetic testing for the prevention of cutaneous drug-induced reactions.

  147. 147.

    Mack MR, Kim BS. A precision medicine-based strategy for a severe adverse drug reaction. Nat Med. 2020;26(2):167–8. https://doi.org/10.1038/s41591-020-0756-0.

    CAS  Article  PubMed  Google Scholar 

  148. 148.

    Kim D, Chung KB, Kim TG. Application of single-cell RNA sequencing on human skin: Technical evolution and challenges. J Dermatol Sci. 2020;99(2):74–81. https://doi.org/10.1016/j.jdermsci.2020.06.002.

    CAS  Article  PubMed  Google Scholar 

  149. 149.

    •• Kim D, Kobayashi T, Voisin B, Jo JH, Sakamoto K, Jin SP et al. Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat Med. 2020;26(2):236–43. doi:https://doi.org/10.1038/s41591-019-0733-7. The first study using single-cell transcriptomics in drug hypersentivity. Their results support the utility of this approach for the evaluation of drug hypersensitivy reactions,including underlying mechanisms and the identification of potential biomarkers for diagnosis and prognosis.

Download references

Acknowledgements

We thank Ms. Claudia Corazza for her help with the English version of the manuscript.

Funding

This work was supported by grants co-funded by the European Regional Development Fund (ERDF), from the Carlos III National Health Institute (ARADyAL network RD16/0006/0001, RD16/0006/0007, and RD16/0006/00033; and PI17/01593). I Doña is a Clinical Investigator (B-0001-2017) from Consejería de Salud of Junta de Andalucía. R Jurado-Escobar holds a P-FIS PhD student grant (Ref FI18/00133) and JA Cornejo-García is a senior researcher from the Miguel Servet Program II (Ref CPII19/00006), both from the Carlos III National Health Institute, Spanish Ministry of Economy and Competitiveness).

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Antonio Cornejo-García PhD.

Ethics declarations

Conflict of interest

Inmaculada Doña declares that she has no conflict of interest. Raquel Jurado-Escobar declares that she has no conflict of interest. Natalia Pérez-Sánchez declares that she has no conflict of interest. José Julio Laguna declares that he has no conflict of interest. Joan Bartra declares that she has no conflict of interest. Almudena Testera-Montes declares that she has no conflict of interest. Rocío Sáenz de Santa María declares that he has no conflict of interest. María José Torres declares that she has no conflict of interest. José Antonio Cornejo-García declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Drug Allergy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doña, I., Jurado-Escobar, R., Pérez-Sánchez, N. et al. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine?. Curr Treat Options Allergy 8, 42–59 (2021). https://doi.org/10.1007/s40521-020-00278-4

Download citation

Keywords

  • Drug hypersensitivity
  • Single nucleotide polymorphisms
  • Pharmacogenomics
  • Genetic testing
  • Precision medicine