Skip to main content

Advertisement

Log in

Dietary and Nutritional Influences on Allergy Prevention

  • Allergy Prevention (DY Wang, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of Review

Nutritional status has a profound effect on immune function, and vitamin D, omega-3 fats, and other nutrients have long been suspected of influencing the development of the allergic march, and the incidence and severity of allergic conditions. This review provides an overview of research and opinion published during the past decade and summarizes clinically actionable information about dietary and nutritional influences on allergy prevention.

Recent Findings

There is now enough evidence of effects of vitamin D, omega-3 fats, the Mediterranean diet, and antioxidants to recommend their use in routine clinical practice for prevention and treatment of allergic conditions.

Summary

Uncertain areas remain, especially in methods to best identify persons with specific nutritional deficiencies, and in determining optimal target levels for all essential nutrients. The potential gain in individual quality of life, especially by asthma reduction, makes achieving good nutrition a key goal for every clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Venter C, Brown KR, Maslin K, Palmer DJ. Maternal dietary intake in pregnancy and lactation and allergic disease outcomes in offspring. Pediatr Allergy Immunol. 2017;28:135–43. https://doi.org/10.1111/pai.12682. Excellent review of effects of altering maternal diet on allergic child outcomes, and, informative discussion of technical problems with many research studies in this field.

    Article  PubMed  Google Scholar 

  2. Gordon BR. Should vitamin D supplementation be a regular part of asthma care? Otolaryngol Clin N Am. 2014;47:97–108. https://doi.org/10.1016/j.otc.2013.08.013.

    Article  Google Scholar 

  3. Aguilera-Aguirre L, Hao W, Pan L, Li X, Saavedra-Molina A, Bacsi A, et al. Pollen induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation. Am J Phys Lung Cell Mol Phys. 2017;313:L1058–68. https://doi.org/10.1152/ajplung.00141.2017.

    Article  CAS  Google Scholar 

  4. Yu B, Cai W, Zhang HH, Zhong YS, Fang J, Zhang WY, et al. Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma. J Ethnopharmacol. 2017;195:71–80. https://doi.org/10.1016/j.jep.2016.11.049.

    Article  CAS  PubMed  Google Scholar 

  5. Gostner JM, Becker K, Ueberall F, Fuchs D. The good and bad of antioxidant foods: an immunological perspective. Food Chem Toxicol. 2015;80:72–9. https://doi.org/10.1016/j.fct.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka T. Flavonoids for allergic diseases: present evidence and future perspective. Curr Pharm Des. 2014;20:879–85. https://doi.org/10.2174/13816128113199990060.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Q. Natural forms of vitamin E: metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90. https://doi.org/10.1016/j.freeradbiomed.2014.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng TP, Niti M, Yap KB, Tan WC. Dietary and supplemental antioxidant and anti-inflammatory nutrient intakes and pulmonary function. Public Health Nutr. 2014;17:2081–6. https://doi.org/10.1017/S1368980013002590.

    Article  PubMed  Google Scholar 

  9. Gref A, Rautiainen S, Gruzieva O, Hakansson N, Kull I, Pershagen G, et al. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Clin Exp Allergy. 2017;47:751–9. https://doi.org/10.1111/cea.12911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larkin EK, Gao YT, Gebretsadik T, Hartman TJ, Wu P, et al. New risk factors for adult-onset incident asthma: a nested case–control study of host antioxidant defense. Am J Respir Crit Care Med. 2015;191:45–53. https://doi.org/10.1164/rccm.201405-0948OC.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hong SA, Lee E, Kwon SO, Kim KW, Shin YH, Ahn KM, et al. Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism. World J Pediatr. 2017;13:173–82. https://doi.org/10.1007/s12519-016-0054-6.

    Article  CAS  PubMed  Google Scholar 

  12. Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018;57:25–40. https://doi.org/10.1007/s00394-017-1546-4.

    Article  CAS  PubMed  Google Scholar 

  13. Cires MJ, Wong X, Carrasco-Pozo C, Gotteland M. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Front Nutr. 57:1–27. https://doi.org/10.3389/fnut.2016.00057.

  14. Cook-Mills J, Gebretsadik T, Abdala-Valencia H, Green J, Larkin EK, Dupont WD, et al. Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax. 2016;71:954–6. https://doi.org/10.1136/thoraxjnl-2016-208494.

    Article  PubMed  Google Scholar 

  15. Dinu M, Pagliai G, Casini A, Sofi F. Mediterraneal diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomized trials. Eur J Clin Nutr. 2018;72:30–43. https://doi.org/10.1038/ejcn.2017.58.

    Article  CAS  PubMed  Google Scholar 

  16. Han YY, Forno E, Holguin F, Celedon JC. Diet and asthma: an update. Curr Opin Allergy Clin Immunol. 2015;15:369–74. https://doi.org/10.1097/ACI.0000000000000179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Papamichael MM, Itsiopoulos C, Susanto NH, Erbas B. Does adherence to the Mediterranean dietary pattern reduce asthma symptoms in children? A systematic review of observational studies. Public Health Nutr. 2017;20:2722–34. https://doi.org/10.1017/S1368980017001823. Systematic review of Mediterranean diet effects on child asthma.

    Article  PubMed  Google Scholar 

  18. Garcia-Larsen V, Del Giacco SR, Moreira A, Bonini M, Charles D, Reeves T, et al. Asthma and dietary intake: an overview of systematic reviews. Allergy. 2016;71:433–42. https://doi.org/10.1111/all.12800.

    Article  CAS  PubMed  Google Scholar 

  19. Seyedrezazadeh E, Moghaddam MP, Ansarin K, Vafa MR, Sharma S, Koladooz F. Fruit and vegetable intake and risk of wheezing and asthma: a systematic review and meta-analysis. Nutr Rev. 2014;72:411–28. https://doi.org/10.1111/nure.12121.

    Article  PubMed  Google Scholar 

  20. Kusunoki T, Takeuchi J, Morimoto T, Sakuma M, Yasumi T, Nishikomori R, et al. Fruit intake reduces the onset of respiratory allergic symptoms in schoolchildren. Pediatr Allergy Immunol. 2017;28:793–800. https://doi.org/10.1111/pai.12817.

    Article  PubMed  Google Scholar 

  21. Park S, Akinbami LJ, McGuire LC, Blanck HM. Association of sugar-sweetened beverage intake frequency and asthma among U.S. adults, 2013. Prev Med. 2016;91:58–61. https://doi.org/10.1016/j.ypmed.2016.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maslova E, Strøm M, Olsen SF, Halldorsson TI. Consumption of artificially-sweetened soft drinks in pregnancy and risk of child asthma and allergic rhinitis. PLoS One. 2013;8:e57261. https://doi.org/10.1371/journal.pone.0057261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chatzi L, Garcia R, Roumeliotaki T, Basterrechea M, Begiristain H, Iñiguez C, et al. Mediterranean diet adherence during pregnancy and risk of wheeze and eczema in the first year of life: IMA (Spain) and RHEA (Greece) mother-child cohort studies. Br J Nutr. 2013;110:2058–68. https://doi.org/10.1017/S0007114513001426.

    Article  CAS  PubMed  Google Scholar 

  24. Sewell DA, Hammersley VS, Robertson A, Devereux G, Stoddart A, Weir CJ, et al. A pilot randomised controlled trial investigating a Mediterranean diet intervention in pregnant women for the primary prevention of allergic diseases in infants. J Hum Nutr Diet. 2017;30:604–14. https://doi.org/10.1111/jhn.12469.

    Article  CAS  PubMed  Google Scholar 

  25. Stratakis N, Roumeliotaki T, Oken E, Ballester F, Barros H, Basterrechea M, et al. Fish and seafood consumption during pregnancy and the risk of asthma and allergic rhinitis in childhood: a pooled analysis of 18 European and US birth cohorts. Int J Epidemiol. 2017;46:1465–77. https://doi.org/10.1093/ije/dyx007.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang GQ, Liu B, Li J, Luo CQ, Zhang Q, Chen JL, et al. Fish intake during pregnancy or infancy and allergic outcomes in children: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2017;28:152–61. https://doi.org/10.1111/pai.12648.

    Article  PubMed  Google Scholar 

  27. Waidyatillake NT, Dharmage SC, Allen KJ, Lodge CJ, Simpson JA, Bowatte G, et al. Association of breast milk fatty acids with allergic disease outcomes—a systematic review. Allergy. 2018;73:295–312. https://doi.org/10.1111/all.13300.

    Article  CAS  PubMed  Google Scholar 

  28. Papamichael MM, Shrestha SK, Itsiopoulos C, Erbas B. The role of fish intake on asthma in children: a meta-analysis of observational studies. Pediatr Allergy Immunol. 2018;29:350–60. https://doi.org/10.1111/pai.12889.

    Article  CAS  PubMed  Google Scholar 

  29. Clausen M, Jonasson K, Keil T, Beyer K, Sigurdardottir ST. Fish oil in infancy protects against food allergy in Iceland-results from a birth cohort study. Allergy. 2018;73:1305–12. https://doi.org/10.1111/all.13385.

    Article  CAS  PubMed  Google Scholar 

  30. Vasileiadou S, Wennergren G, Strömberg Celind F, Aberg N, Pettersson R, Alm B, et al. Eating fish and farm life reduce allergic rhinitis at the age of twelve. Pediatr Allergy Immunol. 2018;29:283–9. https://doi.org/10.1111/pai.12875.

    Article  PubMed  Google Scholar 

  31. Foiles AM, Kerling EH, Wick JA, Scalabrin DM, Colombo J, Carlson SE. Formula with long chain polyunsaturated fatty acids reduces incidence of allergy in early childhood. Pediatr Allergy Immunol. 2016;27:156–61. https://doi.org/10.1111/pai.12515.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hansen S, Strøm M, Maslova E, Dahl R, Hoffmann HJ, Rytter D, et al. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J Allergy Clin Immunol. 2017;139:104–11.e4. https://doi.org/10.1016/j.jaci.2016.02.042.

    Article  CAS  PubMed  Google Scholar 

  33. Bisgaard H, Stokholm J, Chawes BL, Vissing NH, Bjarnadóttir E, Schoos AM, et al. Fish oil–derived fatty acids in pregnancy and wheeze and asthma in offspring. N Engl J Med. 2016;375:2530–9. https://doi.org/10.1056/NEJMoa1503734.

    Article  CAS  PubMed  Google Scholar 

  34. Best KP, Sullivan TR, Palmer DJ, Gold M, Martin J, Kennedy D, et al. Prenatal omega-3 LCPUFA and symptoms of allergic disease and sensitization throughout early childhood—a longitudinal analysis of long-term follow-up of a randomized controlled trial. World Allergy Organ J. 2018;11:10. https://doi.org/10.1186/s40413-018-0190-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berman D, Clinton C, Limb R, Somers EC, Romero V, Mozurkewich E. Prenatal omega-3 supplementation and eczema risk among offspring at age 36 months. Insights Allergy Asthma Bronchitis. 2016;2(1). https://doi.org/10.21767/2471-304X.100014.

  36. Brick T, Schober Y, Böcking C, Pekkanen J, Genuneit J, Loss G, et al. Omega-3 fatty acids contribute to the asthma-protective effect of unprocessed cow’s milk. J Allergy Clin Immunol. 2016;137:1699–1706.e13. https://doi.org/10.1016/j.jaci.2015.10.042.

    Article  CAS  PubMed  Google Scholar 

  37. Williams NC, Hunter KA, Shaw DE, Jackson KG, Sharpe GR, Johnson MA. Comparable reductions in hyperpnoea-induced bronchoconstriction and markers of airway inflammation after supplementation with 6·2 and 3·1 g/d of long-chain n-3 PUFA in adults with asthma. Br J Nutr. 2017;117:1379–89. https://doi.org/10.1017/S0007114517001246.

    Article  CAS  PubMed  Google Scholar 

  38. Schwalfenberg GK, Genuis SJ. The importance of magnesium in clinical healthcare. Scientifica (Cairo). 2017;2017:4179326. https://doi.org/10.1155/2017/4179326.

    Article  Google Scholar 

  39. Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients. 2015;7:8199–226. https://doi.org/10.3390/nu7095388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95:1–46. https://doi.org/10.1152/physrev.00012.2014.

    Article  CAS  PubMed  Google Scholar 

  41. Ma R, Shen Y, Hou L, Yang Z, Feng N, Yan X, et al. The correlation of allergic rhinitis and trace elements in Ningxia region. [Article in Chinese]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014;49:1017–20. https://doi.org/10.3760/cma.j.issn.1673-0860.2014.12.010.

    Article  PubMed  Google Scholar 

  42. Fabian E, Pölöskey P, Kósa L, Elmadfa I, Réthy LA. Nutritional supplements and plasma antioxidants in childhood asthma. Wien Klin Wochenschr. 2013;125:309–15. https://doi.org/10.1007/s00508-013-0359-6.

    Article  CAS  PubMed  Google Scholar 

  43. Devereux G, McNeill G, Newman G, Turner S, Craig L, Martindale S, et al. Early childhood wheezing symptoms in relation to plasma selenium in pregnant mothers and neonates. Clin Exp Allergy. 2007;37:1000–8. https://doi.org/10.1111/j.1365-2222.2007.02757.x.

    Article  CAS  PubMed  Google Scholar 

  44. Shaheen SO, Newson RB, Henderson AJ, Emmett PM, Sherriff A, Cooke M, et al. Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur Respir J. 2004;24:292–7. https://doi.org/10.1183/09031936.04.00117803.

    Article  CAS  PubMed  Google Scholar 

  45. Shaheen SO, Rutterford CM, Lewis SJ, Ring SM, Holloway JW, Golding J, et al. Maternal selenium status in pregnancy, offspring glutathione peroxidase 4 genotype, and childhood asthma. J Allergy Clin Immunol. 2015;135:1083–5.e3. https://doi.org/10.1016/j.jaci.2014.10.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamer B, Wąsowicz W, Pyziak K, Kamer-Bartosińska A, Gromadzińska J, Pasowska R. Role of selenium and zinc in the pathogenesis of food allergy in infants and young children. Arch Med Sci. 2012;8:1083–8. https://doi.org/10.5114/aoms.2012.32420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Litonjua AA, Rifas-Shiman SL, Ly NP, Tantisira KG, Rich-Edwards JW, Camargo CA Jr, et al. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am J Clin Nutr. 2006;84:903–11. https://doi.org/10.1093/ajcn/84.4.903.

    Article  CAS  PubMed  Google Scholar 

  48. Devereux G, Turner SW, Craig LC, McNeill G, Martindale S, Harbour PJ, et al. Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am J Respir Crit Care Med. 2006174:499–507. https://doi.org/10.1164/rccm.200512-1946OC.

    Article  CAS  PubMed  Google Scholar 

  49. West CE, Dunstan J, McCarthy S, Metcalfe J, D'Vaz N, Meldrum S, et al. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients. 2012;4:1747–58. https://doi.org/10.3390/nu4111747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nwaru BI, Hayes H, Gambling L, Craig LC, Allan K, Prabhu N, et al. An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy. Br J Nutr. 2014;112:2018–27. https://doi.org/10.1017/S0007114514003122.

    Article  CAS  PubMed  Google Scholar 

  51. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73:145–52. https://doi.org/10.1111/all.13232.

    Article  CAS  PubMed  Google Scholar 

  52. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 2014;25:428–38. https://doi.org/10.1111/pai.12232.

    Article  PubMed  Google Scholar 

  53. Marlow G, Han DY, Wickens K, Stanley T, Crane J, Mitchell EA, et al. Differential effects of two probiotics on the risks of eczema and atopy associated with single nucleotide polymorphisms to Toll-like receptors. Pediatr Allergy Immunol. 2015;26:262–71. https://doi.org/10.1111/pai.12371.

    Article  PubMed  Google Scholar 

  54. So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;107:965–83. https://doi.org/10.1093/ajcn/nqy041.

    Article  PubMed  Google Scholar 

  55. Ahmadizar F, Vijverberg SJH, Arets HGM, de Boer A, Lang JE, Garssen J, et al. Early-life antibiotic exposure increases the risk of developing allergic symptoms later in life: a meta-analysis. Allergy. 2018;73:971–86. https://doi.org/10.1111/all.13332.

    Article  CAS  PubMed  Google Scholar 

  56. Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine. 2015;3:172–9. https://doi.org/10.1016/j.ebiom.2015.11.038 eCollection 2016 Jan.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172–84. https://doi.org/10.1080/19490976.2017.1290756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Puertollano E, Kolida S, Yaqoob P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 2014;17:139–44. https://doi.org/10.1097/MCO.0000000000000025.

    Article  CAS  PubMed  Google Scholar 

  59. Holscher HD, Faust KL, Czerkies LA, Litov R, Ziegler EE, Lessin H, et al. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. J Parenter Enter Nutr. 2012;36:95S–105S. https://doi.org/10.1177/0148607111430087.

    Article  CAS  Google Scholar 

  60. Williams NC, Johnson MA, Shaw DE, Spendlove I, Vulevic J, Sharpe GR, et al. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation. Br J Nutr. 2016;116:798–804. https://doi.org/10.1017/S0007114516002762.

    Article  CAS  PubMed  Google Scholar 

  61. Yang C, Rupa P, Kanatani H, Nakamura A, Ibuki M, Mine Y. Therapeutic effects of β1, 4 mannobiose in a Balb/c mouse model of intranasally-induced pollen allergy. Allergol Int. 2013;62:65–76. https://doi.org/10.2332/allergolint.12-OA-0473.

    Article  CAS  PubMed  Google Scholar 

  62. Verheijden KA, Akbari P, Willemsen LE, Kraneveld AD, Folkerts G, Garssen J, et al. Inflammation-induced expression of the alarmin interleukin 33 can be suppressed by galacto-oligosaccharides. Int Arch Allergy Immunol. 2015;167:127–36. https://doi.org/10.1159/000437327.

    Article  CAS  PubMed  Google Scholar 

  63. Tsuda M, Arakawa H, Ishii N, Ubukata C, Michimori M, Noda M, et al. dietary fructo-oligosaccharides attenuate early activation of cd4+ t cells which produce both th1 and th2 cytokines in the intestinal lymphoid tissues of a murine food allergy model. Int Arch Allergy Immunol. 2017;174:121–32. https://doi.org/10.1159/000481984.

    Article  CAS  PubMed  Google Scholar 

  64. Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy. 2015;70:1091–102. https://doi.org/10.1111/all.12650.

    Article  CAS  PubMed  Google Scholar 

  65. Hayen SM, den Hartog Jager CF, Knulst AC, Knol EF, Garssen J, Willemsen LEM, et al. Non-digestible oligosaccharides can suppress basophil degranulation in whole blood of peanut-allergic patients. Front Immunol. 2018;9:1265. https://doi.org/10.3389/fimmu.2018.01265 eCollection 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zehra S, Khambati I, Vierhout M, Mian MF, Buck R, Forsythe P. Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. J Food Sci. 2018;83:499–508. https://doi.org/10.1111/1750-3841.14039.

    Article  CAS  PubMed  Google Scholar 

  67. Cuello-Garcia C, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Morgano GP, Zhang Y, et al. Prebiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. Clin Exp Allergy. 2017;47:1468–77. https://doi.org/10.1111/cea.13042.

    Article  CAS  PubMed  Google Scholar 

  68. Cuello-Garcia CA, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Morgano GP, Zhang Y, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Prebiotics. Worl Allergy Organ J. 2016;9:10. https://doi.org/10.1186/s40413-016-0102-7 eCollection 2016.

    Article  CAS  Google Scholar 

  69. Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol. 2017;139:1525–35. https://doi.org/10.1016/j.jaci.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  70. Abdala-Valencia H, Berdnikovs S, McCary CA, Urick D, Mahadevia R, Marchese ME, et al. Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan. Am J Phys Lung Cell Mol Phys. 2012;303:L642–60. https://doi.org/10.1152/ajplung.00406.2011.

    Article  CAS  Google Scholar 

  71. van Oosterhout M, Janmohamed SR, Spierings M, Hiddinga J, de Waard-van der Spek FB, Oranje AP. Correlation between objective SCORAD and three-item severity score used by physicians and objective PO-SCORAD used by parents/patients in children with atopic dermatitis. Dermatology. 2015;230:105–12. https://doi.org/10.1159/000367689.

    Article  PubMed  Google Scholar 

  72. Aranda CS, Pereira KCHM, Velasco HF, Mallozi MC, Andrade RS, Rodrigues WDR, et al. Isoleucine and atopic dermatitis. Pediatr Allergy Immunol. 2017;28:495–7. https://doi.org/10.1111/pai.12731.

    Article  PubMed  Google Scholar 

  73. • Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr. 2018;58:1629–49. https://doi.org/10.1080/10408398.2016.1275519. Thorough review of uses of peptide treatment for food allergy prevention and treatment.

    Article  CAS  PubMed  Google Scholar 

  74. Kostadinova AI, Middelburg J, Ciulla M, Garssen J, Hennink WE, Knippels LMJ, et al. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow’s milk allergy prevention. Eur J Pharmacol. 2018;818:211–20. https://doi.org/10.1016/j.ejphar.2017.10.051.

    Article  CAS  PubMed  Google Scholar 

  75. Jiménez M, Cervantes-García D, Muñoz YH, García A, Haro LM Jr, Salinas E. Novel mechanisms underlying the therapeutic effect of glycomacropeptide on allergy: change in gut microbiota, upregulation of TGF-β, and inhibition of mast cells. Int Arch Allergy Immunol. 2016;171:217–26. https://doi.org/10.1159/000453035.

    Article  CAS  PubMed  Google Scholar 

  76. Carlsten C, MacNutt MJ, Zhang Z, Sava F, Pui MM. Anti-oxidant N-acetylcysteine diminishes diesel exhaust-induced increased airway responsiveness in person with airway hyper-reactivity. Toxicol Sci. 2014;139:479–87. https://doi.org/10.1093/toxsci/kfu040.

    Article  CAS  PubMed  Google Scholar 

  77. Mosges R, Koch AF, Raskopf E, Singh J, Shah-Hosseini K, Astvatsatourov A, et al. Lolium perenne ppeptide immunotherapy is well tolerated and elicits a protective B-cell response on seasonal allergic rhinitis patients. Allergy. 2018;73:1254–62. https://doi.org/10.1111/all.13392.

    Article  CAS  PubMed  Google Scholar 

  78. Turfkruyer M, Rekima A, Macchiaverni P, Le Bourhis L, Muncan V, van den Brink GR, et al. Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency. Mucosal Immunol. 2016;9:479–91. https://doi.org/10.1038/mi.2015.114.

    Article  CAS  PubMed  Google Scholar 

  79. Hufnagl K, Jensen-Jarolim E. Vitamin A and D in allergy: from experimental animal models and cellular studies to human disease. Allergo J Int. 2018;27:72–8. https://doi.org/10.1007/s40629-018-0054-2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kiraly N, Aage S, Benn CS. Disparity between vitamin A-induced Th1-dependent oral tolerance in newborn mice and vitamin A-induced atopic sensitization in Guinean girls. Mucosal Immunol. 2016;9:564. https://doi.org/10.1038/mi.2016.6.

    Article  CAS  PubMed  Google Scholar 

  81. Maslova E, Hansen S, Strøm M, Halldorsson TI, Olsen SF. Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort. Br J Nutr. 2014;111:1096–108. https://doi.org/10.1017/S0007114513003395.

    Article  CAS  PubMed  Google Scholar 

  82. Strait RT, Camargo CA. Vitamin E and the risk of childhood asthma. Expert Rev Respir Med. 2016;10:881–90. https://doi.org/10.1080/17476348.2016.1184090.

    Article  CAS  PubMed  Google Scholar 

  83. Abdala-Valencia H, Berdnikovs S, Soveg FW, Cook-Mills JM. α -tocopherol supplementation of allergic female mice inhibits development of CD11c CD11b dendritic cells in utero and allergic inflammation in neonates. Am J Phys Lung Cell Mol Phys. 2014;307:L482–L96. https://doi.org/10.1152/ajplung.00132.2014.

    Article  CAS  Google Scholar 

  84. Allan KM, Prabhu N, Craig LCA, McNeill G, Kirby B, McLay J, et al. Maternal vitamin D and E intakes during pregnancy are associated with asthma in children. Eur Respir J. 2015;45:1027–36. https://doi.org/10.1183/09031936.00102214.

    Article  CAS  PubMed  Google Scholar 

  85. Shibata T, Ismailoglu UB, Kittan NA, Moreira AP, Coelho AL, Chupp GL, et al. Role of growth arrest–specific gene 6 in the development of fungal allergic airway disease in mice. Am J Respir Cell Mol Biol. 2014;51(5):615–25. https://doi.org/10.1165/rcmb.2014-0049OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han YY, Blatter J, Brehm JM, Forno E, Litonjua AA, Celedón JC. Diet and asthma: vitamins and methyl donors. Lancet Respir Med. 2013;1(10):813–22. https://doi.org/10.1016/S2213-2600(13)70126-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaghaghi MA, Kloss O, Eck P. Genetic variation in human vitamin C transporter genes in common complex diseases. Adv Nutr. 2016;7:287–98. https://doi.org/10.3945/an.115.009225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McStay CL, Prescott SL, Bower C, Palmer DJ. Maternal folic acid supplementation during pregnancy and childhood allergic disease outcomes: a question of timing? Nutrients. 2017;9:123. https://doi.org/10.3390/nu9020123.

    Article  CAS  PubMed Central  Google Scholar 

  89. Wang T, Hong-Ping Zhang HP, Zhang X, Liang ZA, Ji YL, Wang G. Is folate status a risk factor for asthma or other allergic diseases? Allergy Asthma Immunol Res. 2015;7:538–46. https://doi.org/10.4168/aair.2015.7.6.538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Veeranki SP, Gebretsadik T, Mitchel EF, Tylavsky FA, Hartert TV, Cooper WO, et al. Maternal folic acid supplementation during pregnancy and early childhood asthma. Epidemiology. 2015;26:934–41. https://doi.org/10.1097/EDE.0000000000000380.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Roy A, Kocak M, Hartman TJ, Vereen S, Adgent M, Piyathilake C, et al. Association of prenatal folate status with early childhood wheeze and atopic dermatitis. Pediatr Allergy Immunol. 2018;29:144–50. https://doi.org/10.1111/pai.12834.

    Article  CAS  PubMed  Google Scholar 

  92. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. https://doi.org/10.3390/nu9111211.

    Article  CAS  PubMed Central  Google Scholar 

  93. Joshi P, Kim WJ, Lee SA. The effect of dietary antioxidant on the COPD risk: the community-based KoGES (Ansan-Anseong) cohort. Int J Chron Obstruct Pulmon Dis. 2015;21:59–68. https://doi.org/10.2147/COPD.S91877 eCollection 2015.

    Article  Google Scholar 

  94. Vollbracht C, Raithel M, Krick B, Kraft K, Hagel AF. Intravenous vitamin C in the treatment of allergies: an interim subgroup analysis of a long-term observational study. J Int Med Res. 2018;46:3640–55. https://doi.org/10.1177/0300060518777044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shorey-Kendrick LE, McEvoy CT, Ferguson B, Burchard J, Park BS, Gao L, et al. Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy. Am J Respir Crit Care Med. 2017;196:745–55. https://doi.org/10.1164/rccm.201610-2141OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McEvoy CT, Schilling D, Clay N, Jackson K, Go MD, Spitale P, et al. Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA. 2014;311:2074–82. https://doi.org/10.1001/jama.2014.5217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. •• Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18:153–65. https://doi.org/10.1007/s11154-017-9424-1. Documentation of extent of vitamin D deficiency in the world, careful discussion of arguments for raising vitamin D levels, analysis of difficulties in achieving target calcidiol levels, and review of safety of high vitamin D levels.

    Article  CAS  PubMed  Google Scholar 

  98. Poole A, Song Y, Brown H, Hart PH, Zhang GB. Cellular and molecular mechanisms of vitamin D in food allergy. J Cell Mol Med. 2018;22:3270–7. https://doi.org/10.1111/jcmm.13607.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wu J, Zhong Y, Shen X, Yang K, Cai W. Maternal and early-life vitamin D deficiency enhances allergic reaction in an ovalbumin-sensitized BALB/c mouse model. Food Nutr Res. 2018;62:1401. https://doi.org/10.29219/fnr.v62.1401.

    Article  Google Scholar 

  100. Bolcas P, Brandt E, Zhang Z, Biagini Myers J, Ruff B, Khurana Hershey GK. Vitamin D supplementation attenuates asthma development following traffic-related particulate matter exposure. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.04.042.

  101. Ojaimi S, Skinner NA, Strauss BJG, Sundararajan V, Woolley I, Visvanathan K. Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J Transl Med. 2013;11:176. https://doi.org/10.1186/1479-5876-11-176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jerzyńska J, Stelmach W, Rychlik B, Majak P, Podlecka D, Woicka-Kolejwa K, et al. Clinical and immunological effects of vitamin D supplementation during the pollen season in children with allergic rhinitis. Arch Med Sci. 2018;14:122–31. https://doi.org/10.5114/aoms.2016.61978.

    Article  PubMed  Google Scholar 

  103. Hibbs AM, Ross K, Kerns LA, Wagner C, Fuloria M, Groh-Wargo S, et al. Effect of vitamin D supplementation on recurrent wheezing in black infants who were born preterm: the D-wheeze randomized clinical trial. JAMA. 2018;319:2086–94. https://doi.org/10.1001/jama.2018.5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chiu CY, Su KW, Tsai MH, Hua MC, Liao SL, Lai SH, et al. Longitudinal vitamin D deficiency is inversely related to mite sensitization in early childhood. Pediatr Allergy Immunol. 2018;29:254–9. https://doi.org/10.1111/pai.12846.

    Article  PubMed  Google Scholar 

  105. • Batmaz SB, Arıkoğlu T, Tamer L, Eskandari G, Kuyucu S. Seasonal variation of asthma control, lung function tests and allergic inflammation in relation to vitamin D levels: a prospective annual study. Adv Dermatol Allergol. 2018;35:99–105. https://doi.org/10.5114/ada.2017.71421. Demonstration of natural history of asthma symptoms as they vary with seasonal vitamin D levels.

    Article  Google Scholar 

  106. •• Abreo A, Gebretsadik T, Stone CA, Hartert TV. The impact of modifiable risk factor reduction on childhood asthma development. Clin Trans Med. 2018;7:15. https://doi.org/10.1186/s40169-018-0195-4. Critical systematic review of prior systematic reviews to identify asthma prevention interventions that have both good scientific support and high impact.

    Article  Google Scholar 

  107. Yepes-Nuñez JJ, Brożek JL, Fiocchi A, Pawankar R, Cuello-García C, Zhang Y, et al. Vitamin D supplementation in primary allergy prevention: systematic review of randomized and non-randomized studies. Allergy. 2018;73:37–49. https://doi.org/10.1111/all.13241.

    Article  PubMed  Google Scholar 

  108. Pacheco-González RM, García-Marcos L, Morales E. Prenatal vitamin D status and respiratory and allergic outcomes in childhood: a meta-analysis of observational studies. Pediatr Allergy Immunol. 2018;29:243–53. https://doi.org/10.1111/pai.12876.

    Article  PubMed  Google Scholar 

  109. • Wolsk HM, Chawes BL, Litonjua AA, Hollis BW, Waage J, Stokholm J, et al. Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: a combined analysis of two randomized controlled trials. PLoS ONE. 2017;12(10):e0186657. https://doi.org/10.1371/journal.pone.0186657. Excellent example of combining vitamin D supplementation studies to achieve adequate numbers for statistical analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wagner CL, Hollis BW, Kotsa K, Fakhoury H, Karras SN. Vitamin D administration during pregnancy as prevention for pregnancy, neonatal, and postnatal complications. Rev Endocr Metab Disord. 2017;18:307–22. https://doi.org/10.1007/s11154-017-9414-3.

    Article  CAS  PubMed  Google Scholar 

  111. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30. https://doi.org/10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

  112. Kimball SM, Mirhosseini N, Holick MF. Evaluation of vitamin D3 intakes up to 15,000 international units/day and serum 25-hydroxyvitamin D concentrations up to 300 nmol/L on calcium metabolism in a community setting. Dermatoendocrinol. 2017;9(1):e1300213 (10 pages). https://doi.org/10.1080/19381980.2017.1300213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88:582S–6S. https://doi.org/10.1093/ajcn/88.2.582S.

    Article  CAS  PubMed  Google Scholar 

  114. Burwell SM, Vilsack TJ, U.S. Department of Health and Human Services, U.S. Department of Agriculture. Dietary Guidelines, the 2015–2020 Dietary Guidelines for Americans. 2015 Appendix 7: Nutritional goals for age-sex groups based on dietary reference intakes and dietary guidelines recommendations.https://health.gov/dietaryguidelines/2015/guidelines

  115. European Food Safety Authority. 2017. Dietary reference values for nutrients: summary report. EFSA supporting publication 2017;e15121. 92 pp. https://doi.org/10.2903/sp.efsa.2017.e15121.

  116. Burwell SM, Vilsack TJ, U.S. Department of Health and Human Services, U.S. Department of Agriculture. Dietary Guidelines, the 2015–2020 Dietary Guidelines for Americans. 2015 Chapter 1: Key elements of healthy eating patterns. https://health.gov/dietaryguidelines/2015/guidelines.

  117. Castiglione D, Platania A, Conti A, Falla M, D'Urso M, Marranzano M. Dietary micronutrient and mineral intake in the Mediterranean healthy eating, ageing, and lifestyle (MEAL) study. Antioxidants (Basel). 2018;7. https://doi.org/10.3390/antiox7070079.

    Article  PubMed Central  Google Scholar 

  118. Lim KH, Riddell LJ, Nowson CA, Booth AO, Szymlek-Gay EA. Iron and zinc nutrition in the economically-developed world: a review. Nutrients. 2013;5:3184–211. https://doi.org/10.3390/nu5083184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lubetzky R, Mandel D, Mimouni FB. Vitamin and mineral supplementation of term infants: are they necessary? World Rev Nutr Diet. 2013;108:79–85. https://doi.org/10.1159/000351489.

    Article  PubMed  Google Scholar 

  120. Rocourt CRB, Cheng WH. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients. 2013;5:1349–65. https://doi.org/10.3390/nu5041349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part II—vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids. J Matern Fetal Neonatal Med. 2011;24, 24(1). https://doi.org/10.3109/14767051003678226.

    Article  Google Scholar 

  122. McGuire S. WHO guideline: vitamin a supplementation in pregnant women; WHO guideline: vitamin a supplementation in postpartum women. Adv Nutr. 2012;3:215–6. https://doi.org/10.3945/an.111.001701.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Traber MG. Vitamin E inadequacy in humans: causes and consequences. Adv Nutr. 2014;5:503–14. https://doi.org/10.3945/an.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sukumar N, Adaikalakoteswari A, Venkataraman H, Maheswaran H, Saravanan P. Vitamin B12 status in women of childbearing age in the UK and its relationship with national nutrient intake guidelines: results from two National Diet and Nutrition Surveys. BMJ Open. 2016;6:e011247. https://doi.org/10.1136/bmjopen-2016-011247.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wilson RD, Audibert F, Brock JA, Carroll J, Cartier L, Gagnon A, et al. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Can. 2015;37:534–52. https://doi.org/10.1016/S1701-2163(15)30230-9.

    Article  PubMed  Google Scholar 

  126. Canadian Agency for Drugs and Technologies in Health. Folate testing: a review of the diagnostic accuracy, clinical utility, cost-effectiveness and guidelines. Ottawa; 2015 Jul 23 [Internet]. https://www.cadth.ca/folate-testing-review-diagnostic-accuracy-clinical-utility-cost-effectiveness-and-guidelines.

  127. Stabler SP. Vitamin B12 deficiency. N Engl J Med. 2013;368:149–60. https://doi.org/10.1056/NEJMcp1113996.

    Article  CAS  PubMed  Google Scholar 

  128. Maxfield L, Crane JS. Vitamin C deficiency (scurvy)’. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018. 2018 Mar 30. Bookshelf ID: NBK493187.

  129. Brambilla A, Pizza C, Lasagni D, Lachina L, Resti M, Trapani S. Pediatric scurvy: when contemporary eating habits bring back the past. Front Pediatr. 2018;6:126. https://doi.org/10.3389/fped.2018.00126 eCollection 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zadka K, Pałkowska-Gozdzik E, Rosołowska-Huszcz D. The state of knowledge about nutrition sources of vitamin D, its role in the human body, and necessity of supplementation among parents in central Poland. Int J Environ Res Public Health. 2018;15:1489. https://doi.org/10.3390/ijerph15071489.

    Article  PubMed Central  Google Scholar 

  131. Saggese G, Vierucci F, Prodam F, Cardinale F, Cetin I, Chiappini E, et al. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr. 2018;44:51. https://doi.org/10.1186/s13052-018-0488-7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rusinska A, Pludowski P, Walczak M, Borszewska-Kornacka MK, Bossowski A, Chlebna-Sokół D, et al. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland—recommendations of the Polish Society Of Pediatric Endocrinology And Diabetes and the expert panel with participation of national specialist consultants and representatives of scientific societies—2018 update. Front Endocrinol. 2018;9:246. https://doi.org/10.3389/fendo.2018.00246.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the staff from Frazier-Grant Medical Library, Cape Cod Hospital, Hyannis, MA, for expert research assistance: Jeanie Vander Pyl, MLIS, library director; June Bianchi, library assistant; and Deborah Tustin, MLIS, library assistant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Gordon MA, MD, FACS, FAAOA.

Ethics declarations

Conflict of Interest

Bruce R. Gordon declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergy Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, B.R. Dietary and Nutritional Influences on Allergy Prevention. Curr Treat Options Allergy 5, 356–373 (2018). https://doi.org/10.1007/s40521-018-0182-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-018-0182-4

Keywords

Navigation