Skip to main content

Advertisement

Log in

Update on Biomarkers to Predict Responders to Allergen Immunotherapy

  • Specific Immunotherapy (L Cox, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Opinion statement

Most investigations aiming to identify biomarkers (BMKs) have focused on immunological changes reflecting our understanding of allergen-specific immunotherapy (AIT) mechanisms of action. The upregulation of allergen-specific regulatory CD4+ T cells, the downregulation or anergy of Th2 cells, the induction of specific “blocking” IgG4s, and the decrease of basophil activation are all thought to contribute to AIT efficacy. To this date, however, none of these immunological alterations can be used to predict AIT efficacy. Changes in the blood at the level of dendritic cells (DCs) reflecting the induction of regulatory DCs concomitantly with a downregulation of pro-allergic DC2s are the only parameters which have been correlated at an individual patient level with AIT efficacy. In this context, the search for BMKs should be extended beyond currently existing boundaries.

To this aim, the combined use of “Omics” technologies, encompassing comprehensive genome, transcriptome and proteome-wide analyses, is being implemented to compare biological samples obtained from clinical responders and non-responders. Such a non-hypothesis driven approach, referred to as the “panorOmic” view, will lead to the discovery of completely novel molecules. In order to predict the patient’s specific response to AIT, future BMKs will likely emerge as algorithms combining information on the patient’s disease, as well as his/her immune status and exposome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIT:

Allergen immunotherapy

BMK:

Biomarker

DC:

Dendritic cell

EPIT:

Epicutaneous immunotherapy

IL:

Interleukin

ILC:

Innate lymphoid cell

OIT:

Oral immunotherapy

SCIT:

Subcutaneous immunotherapy

SLIT:

Sublingual immunotherapy

VIT:

Venom immunotherapy

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shamji MH, Durham SR. Mechanisms of immunotherapy to aeroallergens. Clin Exp Allergy. 2011;41:1235–46. doi:10.1111/j.1365-2222.2011.03804.x.

    Article  CAS  PubMed  Google Scholar 

  2. Moingeon P. Update on immune mechanisms associated with sublingual immunotherapy: practical implications for the clinician. J Allergy Clin Immunol Pract. 2013;1:228–41. doi:10.1016/j.jaip.2013.03.013.

    Article  PubMed  Google Scholar 

  3. Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014;133:621–31. doi:10.1016/j.jaci.2013.12.1088.

    Article  CAS  PubMed  Google Scholar 

  4. Canonica GW, Bousquet J, Casale T, Lockey RF, Baena-Cagnani CE, Pawankar R, et al. Sub-lingual immunotherapy: world allergy organization position paper 2009. Allergy. 2009;64(Suppl 91):1–59. doi:10.1111/j.1398-9995.2009.02309.x.

    PubMed  Google Scholar 

  5. Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011;127:S1–55. doi:10.1016/j.jaci.2010.09.034.

    Article  PubMed  Google Scholar 

  6. Burks AW, Calderon MA, Casale T, Cox L, Demoly P, Jutel M, et al. Update on allergy immunotherapy: American Academy of Allergy, Asthma & Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report. J Allergy Clin Immunol. 2013;131:1288–96. doi:10.1016/j.jaci.2013.01.049.

    Article  PubMed  Google Scholar 

  7. Moingeon P, Mascarell L. Novel routes for allergen immunotherapy: safety, efficacy and mode of action. Immunotherapy. 2012;4:201–12. doi:10.2217/imt.11.171.

    Article  CAS  PubMed  Google Scholar 

  8. Passalacqua G, Compalati E, Canonica GW. Sublingual immunotherapy: other indications. Immunol Allergy Clin N Am. 2011;31:279–87. doi:10.1016/j.iac.2011.02.011.

    Article  Google Scholar 

  9. Trusheim MR, Burgess B, Hu SX, Long T, Averbuch SD, Flynn AA, et al. Quantifying factors for the success of stratified medicine. Nat Rev Drug Discov. 2011;10:817–33. doi:10.1038/nrd3557.

    Article  CAS  PubMed  Google Scholar 

  10. •• Willis JC, Lord GM. Immune biomarkers: the promises and pitfalls of personalized medicine. Nat Rev Immunol. 2015;15:323–9. doi:10.1038/nri3820. This is a review introducing the concept of personalized medicine and the use of BMKs to stratify patients

    Article  CAS  PubMed  Google Scholar 

  11. Topol EJ. Individualized medicine from prewomb to tomb. Cell. 2014;157:241–53. doi:10.1016/j.cell.2014.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95. doi:10.1067/mcp.2001.113989. This article presents a reference definition of a BMK

    Article  Google Scholar 

  13. • Moingeon P. Biomarkers for allergen immunotherapy: a “Panoromic” view. Immunol Allergy Clin N Am. 2016;36:161–79. doi:10.1016/j.iac.2015.08.004. This review describes the challenges and opportunities to identify BMKs of AIT efficacy

    Article  Google Scholar 

  14. Alam R. Biomarkers in asthma and allergy. Immunol Allergy Clin N Am. 2012;32:xi–xii. doi:10.1016/j.iac.2012.06.013.

    Google Scholar 

  15. Shamji MH, Ljorring C, Wurtzen PA. Predictive biomarkers of clinical efficacy of allergen-specific immunotherapy: how to proceed. Immunotherapy. 2013;5:203–6. doi:10.2217/imt.13.6.

    Article  CAS  PubMed  Google Scholar 

  16. Popescu FD. Molecular biomarkers for grass pollen immunotherapy. World J Methodol. 2014;4:26–45. doi:10.5662/wjm.v4.i1.26.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Narkus A, Lehnigk U, Haefner D, Klinger R, Pfaar O, Worm M. The placebo effect in allergen-specific immunotherapy trials. Clin Transl Allergy. 2013;3:42. doi:10.1186/2045-7022-3-42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agency EM. Guideline on the clinical development of products for specific immunotherapy for the treatment of allergic diseases. CHMP/EWP/18504/2006. 2008.

  19. Devillier P, Chassany O, Vicaut E, de Beaumont O, Robin B, Dreyfus JF, et al. The minimally important difference in the rhinoconjunctivitis total symptom score in grass-pollen-induced allergic rhinoconjunctivitis. Allergy. 2014;69:1689–95. doi:10.1111/all.12518.

    Article  CAS  PubMed  Google Scholar 

  20. Scadding G, Hellings P, Alobid I, Bachert C, Fokkens W, van Wijk RG, et al. Diagnostic tools in rhinology EAACI position paper. Clin Transl Allergy. 2011;1:2. doi:10.1186/2045-7022-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Horak F, Zieglmayer P, Zieglmayer R, Lemell P, Devillier P, Montagut A, et al. Early onset of action of a 5-grass-pollen 300-IR sublingual immunotherapy tablet evaluated in an allergen challenge chamber. J Allergy Clin Immunol. 2009;124:471–7. doi:10.1016/j.jaci.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  22. Anto JM, Pinart M, Akdis M, Auffray C, Bachert C, Basagana X, et al. Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: a Mechanisms of the Development of Allergy (MeDALL) seminar. J Allergy Clin Immunol. 2012;129:943–54 e4. doi:10.1016/j.jaci.2012.01.047.

    Article  PubMed  Google Scholar 

  23. Westman M, Lupinek C, Bousquet J, Andersson N, Pahr S, Baar A, et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J Allergy Clin Immunol. 2015;135:1199–206. doi:10.1016/j.jaci.2014.10.042.

    Article  CAS  PubMed  Google Scholar 

  24. Howarth P, Malling HJ, Molimard M, Devillier P. Analysis of allergen immunotherapy studies shows increased clinical efficacy in highly symptomatic patients. Allergy. 2012;67:321–7. doi:10.1111/j.1398-9995.2011.02759.x.

    Article  CAS  PubMed  Google Scholar 

  25. Di Lorenzo G, Mansueto P, Pacor ML, Rizzo M, Castello F, Martinelli N, et al. Evaluation of serums-IgE/total IgE ratio in predicting clinical response to allergen-specific immunotherapy. J Allergy Clin Immunol. 2009;123:1103–10. doi:10.1016/j.jaci.2009.02.012.

    Article  CAS  PubMed  Google Scholar 

  26. Van Overtvelt L, Baron-Bodo V, Horiot S, Moussu H, Ricarte C, Horak F, et al. Changes in basophil activation during grass-pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy. 2011;66:1530–7. doi:10.1111/j.1398-9995.2011.02696.x.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimura T, Yonekura S, Horiguchi S, Taniguchi Y, Saito A, Yasueda H, et al. Increase of regulatory T cells and the ratio of specific IgE to total IgE are candidates for response monitoring or prognostic biomarkers in 2-year sublingual immunotherapy (SLIT) for Japanese cedar pollinosis. Clin Immunol. 2011;139:65–74. doi:10.1016/j.clim.2010.12.022.

    Article  CAS  PubMed  Google Scholar 

  28. Harwanegg C, Laffer S, Hiller R, Mueller MW, Kraft D, Spitzauer S, et al. Microarrayed recombinant allergens for diagnosis of allergy. Clin Exp Allergy. 2003;33:7–13.

    Article  CAS  PubMed  Google Scholar 

  29. Baron-Bodo V, Horiot S, Lautrette A, Chabre H, Drucbert AS, Danze PM, et al. Heterogeneity of antibody responses among clinical responders during grass pollen sublingual immunotherapy. Clin Exp Allergy. 2013;43:1362–73. doi:10.1111/cea.12187.

    Article  CAS  PubMed  Google Scholar 

  30. •• Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135:299–310. doi:10.1016/j.jaci.2014.12.1871. This is a comprehensive review on the heterogeneity of asthma and ongoing efforts to relate endotypes with response rates to specific treatments

    Article  PubMed  Google Scholar 

  31. Carraro S, Rezzi S, Reniero F, Heberger K, Giordano G, Zanconato S, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007;175:986–90. doi:10.1164/rccm.200606-769OC.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Lozano Sinues P, Kohler M, Zenobi R. Human breath analysis may support the existence of individual metabolic phenotypes. PLoS One. 2013;8:e59909. doi:10.1371/journal.pone.0059909.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bos LD, Sterk PJ, Fowler SJ. Breathomics in asthma and COPD. J Allergy Clin Immunol. 2016. doi:10.1016/j.jaci.2016.08.004.

  34. Peters MC, Mekonnen ZK, Yuan S, Bhakta NR, Woodruff PG, Fahy JV. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133:388–94. doi:10.1016/j.jaci.2013.07.036.

    Article  CAS  PubMed  Google Scholar 

  35. Cowan DC, Taylor DR, Peterson LE, Cowan JO, Palmay R, Williamson A, et al. Biomarker-based asthma phenotypes of corticosteroid response. J Allergy Clin Immunol. 2015;135:877–83. doi:10.1016/j.jaci.2014.10.026.

    Article  CAS  PubMed  Google Scholar 

  36. Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, et al. Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol. 2015;136:885–92. doi:10.1016/j.jaci.2015.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Persson H, Kwon AT, Ramilowski JA, Silberberg G, Soderhall C, Orsmark-Pietras C, et al. Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles. J Allergy Clin Immunol. 2015;136:638–48. doi:10.1016/j.jaci.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao C, Biagini Myers JM, Ji H, Metz K, Martin LJ, Lindsey M, et al. Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. J Allergy Clin Immunol. 2015;136:923–31. doi:10.1016/j.jaci.2015.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori K, Emoto M, Inaba M. Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov. 2011;5:124–46.

    Article  CAS  PubMed  Google Scholar 

  40. Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111:1255–61.

    Article  CAS  PubMed  Google Scholar 

  41. Bohle B, Kinaciyan T, Gerstmayr M, Radakovics A, Jahn-Schmid B, Ebner C. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol. 2007;120:707–13. doi:10.1016/j.jaci.2007.06.013.

    Article  CAS  PubMed  Google Scholar 

  42. Eifan AO, Akkoc T, Yildiz A, Keles S, Ozdemir C, Bahceciler NN, et al. Clinical efficacy and immunological mechanisms of sublingual and subcutaneous immunotherapy in asthmatic/rhinitis children sensitized to house dust mite: an open randomized controlled trial. Clin Exp Allergy. 2010;40:922–32. doi:10.1111/j.1365-2222.2009.03448.x.

    Article  CAS  PubMed  Google Scholar 

  43. Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Plaquet C, et al. Specific epicutaneous immunotherapy prevents sensitization to new allergens in a murine model. J Allergy Clin Immunol. 2015;135:1546–57. doi:10.1016/j.jaci.2014.11.028.

    Article  CAS  PubMed  Google Scholar 

  44. O'Hehir RE, Gardner LM, de Leon MP, Hales BJ, Biondo M, Douglass JA, et al. House dust mite sublingual immunotherapy: the role for transforming growth factor-beta and functional regulatory T cells. Am J Respir Crit Care Med. 2009;180:936–47. doi:10.1164/rccm.200905-0686OC.

    Article  PubMed  Google Scholar 

  45. Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014;133:500–10. doi:10.1016/j.jaci.2013.12.1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, et al. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012;130:215–24. doi:10.1016/j.jaci.2012.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jutel M, Pichler WJ, Skrbic D, Urwyler A, Dahinden C, Muller UR. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol. 1995;154:4187–94.

    CAS  PubMed  Google Scholar 

  48. Wambre E, DeLong JH, James EA, LaFond RE, Robinson D, Kwok WW. Differentiation stage determines pathologic and protective allergen-specific CD4+ T-cell outcomes during specific immunotherapy. J Allergy Clin Immunol. 2012;129:544–51. doi:10.1016/j.jaci.2011.08.034.

    Article  CAS  PubMed  Google Scholar 

  49. Suarez-Fueyo A, Ramos T, Galan A, Jimeno L, Wurtzen PA, Marin A, et al. Grass tablet sublingual immunotherapy downregulates the TH2 cytokine response followed by regulatory T-cell generation. J Allergy Clin Immunol. 2014;133:130–8. doi:10.1016/j.jaci.2013.09.043.

    Article  CAS  PubMed  Google Scholar 

  50. •• Ryan JF, Hovde R, Glanville J, Lyu SC, Ji X, Gupta S, et al. Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proc Natl Acad Sci U S A. 2016;113:1286–95. doi:10.1073/pnas.1520180113. This is a comprehensive study of the impact of OIT for peanut allergy on CD4+ T cell subsets

    Article  Google Scholar 

  51. Bonvalet M, Moussu H, Wambre E, Ricarte C, Horiot S, Rimaniol AC, et al. Allergen-specific CD4+ T cell responses in peripheral blood do not predict the early onset of clinical efficacy during grass pollen sublingual immunotherapy. Clin Exp Allergy. 2012;42:1745–55. doi:10.1111/cea.12015.

    Article  CAS  PubMed  Google Scholar 

  52. Rolinck-Werninghaus C, Kopp M, Liebke C, Lange J, Wahn U, Niggemann B. Lack of detectable alterations in immune responses during sublingual immunotherapy in children with seasonal allergic rhinoconjunctivitis to grass pollen. Int Arch Allergy Immunol. 2005;136:134–41. doi:10.1159/000083320.

    Article  CAS  PubMed  Google Scholar 

  53. Dehlink E, Eiwegger T, Gerstmayr M, Kampl E, Bohle B, Chen KW, et al. Absence of systemic immunologic changes during dose build-up phase and early maintenance period in effective specific sublingual immunotherapy in children. Clin Exp Allergy. 2006;36:32–9. doi:10.1111/j.1365-2222.2006.02400.x.

    Article  CAS  PubMed  Google Scholar 

  54. Scadding GW, Shamji MH, Jacobson MR, Lee DI, Wilson D, Lima MT, et al. Sublingual grass pollen immunotherapy is associated with increases in sublingual Foxp3-expressing cells and elevated allergen-specific immunoglobulin G4, immunoglobulin A and serum inhibitory activity for immunoglobulin E-facilitated allergen binding to B cells. Clin Exp Allergy. 2010;40:598–606. doi:10.1111/j.1365-2222.2010.03462.x.

    CAS  PubMed  Google Scholar 

  55. Bahceciler NN, Arikan C, Taylor A, Akdis M, Blaser K, Barlan IB, et al. Impact of sublingual immunotherapy on specific antibody levels in asthmatic children allergic to house dust mites. Int Arch Allergy Immunol. 2005;136:287–94. doi:10.1159/000083956.

    Article  PubMed  Google Scholar 

  56. van de Veen W, Stanic B, Yaman G, Wawrzyniak M, Sollner S, Akdis DG, et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol. 2013;131:1204–12. doi:10.1016/j.jaci.2013.01.014.

    Article  PubMed  Google Scholar 

  57. James LK, Shamji MH, Walker SM, Wilson DR, Wachholz PA, Francis JN, et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol. 2011;127:509–16. doi:10.1016/j.jaci.2010.12.1080.

    Article  CAS  PubMed  Google Scholar 

  58. Wachholz PA, Durham SR. Mechanisms of immunotherapy: IgG revisited. Curr Opin Allergy Clin Immunol. 2004;4:313–8.

    Article  CAS  PubMed  Google Scholar 

  59. Razafindratsita A, Saint-Lu N, Mascarell L, Berjont N, Bardon T, Betbeder D, et al. Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J Allergy Clin Immunol. 2007;120:278–85. doi:10.1016/j.jaci.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  60. Pilette C, Nouri-Aria KT, Jacobson MR, Wilcock LK, Detry B, Walker SM, et al. Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol. 2007;178:4658–66.

    Article  CAS  PubMed  Google Scholar 

  61. Shamji MH, Ljorring C, Francis JN, Calderon MA, Larche M, Kimber I, et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy. 2012;67:217–26. doi:10.1111/j.1398-9995.2011.02745.x.

    Article  CAS  PubMed  Google Scholar 

  62. Baron-Bodo V, Batard T, Nguyen H, Frereux M, Horiot S, Harwanegg C, et al. Absence of IgE neosensitization in house dust mite allergic patients following sublingual immunotherapy. Clin Exp Allergy. 2012;42:1510–8. doi:10.1111/j.1365-2222.2012.04044.x.

    Article  CAS  PubMed  Google Scholar 

  63. Bussmann C, Xia J, Allam JP, Maintz L, Bieber T, Novak N. Early markers for protective mechanisms during rush venom immunotherapy. Allergy. 2010;65:1558–65. doi:10.1111/j.1398-9995.2010.02430.x.

    Article  CAS  PubMed  Google Scholar 

  64. Celesnik N, Vesel T, Rijavec M, Silar M, Erzen R, Kosnik M, et al. Short-term venom immunotherapy induces desensitization of FcepsilonRI-mediated basophil response. Allergy. 2012;67:1594–600. doi:10.1111/all.12044.

    CAS  PubMed  Google Scholar 

  65. Ceuppens JL, Bullens D, Kleinjans H, van der Werf J, Group PBES. Immunotherapy with a modified birch pollen extract in allergic rhinoconjunctivitis: clinical and immunological effects. Clin Exp Allergy. 2009;39:1903–9. doi:10.1111/j.1365-2222.2009.03379.x.

    Article  CAS  PubMed  Google Scholar 

  66. Shamji MH, Layhadi JA, Scadding GW, Cheung DK, Calderon MA, Turka LA, et al. Basophil expression of diamine oxidase: a novel biomarker of allergen immunotherapy response. J Allergy Clin Immunol. 2015;135:913–21. e9 doi:10.1016/j.jaci.2014.09.049.

    Article  CAS  PubMed  Google Scholar 

  67. Zidarn M, Kosnik M, Silar M, Bajrovic N, Korosec P. Sustained effect of grass pollen subcutaneous immunotherapy on suppression of allergen-specific basophil response; a real-life, nonrandomized controlled study. Allergy. 2015;70:547–55. doi:10.1111/all.12581.

    Article  CAS  PubMed  Google Scholar 

  68. Aasbjerg K, Backer V, Lund G, Holm J, Nielsen NC, Holse M, et al. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy. Clin Exp Allergy. 2014;44:417–28.

    Article  CAS  PubMed  Google Scholar 

  69. •• Zimmer A, Bouley J, Le Mignon M, Pliquet E, Horiot S, Turfkruyer M, et al. A regulatory dendritic cell signature correlates with the clinical efficacy of allergen-specific sublingual immunotherapy. J Allergy Clin Immunol. 2012;129:1020–30. doi:10.1016/j.jaci.2012.02.014. This is the first study reporting the induction of regulatory DCs in patients responding to AIT, with correlates of efficacy established at an individual patient level

    Article  CAS  PubMed  Google Scholar 

  70. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2016: In press. doi:10.1038/mi.2016.87.

  71. Gueguen C, Bouley J, Moussu H, Luce S, Duchateau M, Chamot-Rooke J, et al. Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy. J Allergy Clin Immunol. 2016;137:545–58. doi:10.1016/j.jaci.2015.09.015.

    Article  CAS  PubMed  Google Scholar 

  72. Angelini F, Pacciani V, Corrente S, Silenzi R, Di Pede A, Polito A, et al. Dendritic cells modification during sublingual immunotherapy in children with allergic symptoms to house dust mites. World J Pediatr. 2011;7:24–30. doi:10.1007/s12519-011-0242-3.

    Article  CAS  PubMed  Google Scholar 

  73. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12:21–7. doi:10.1038/ni.1962.

    Article  CAS  PubMed  Google Scholar 

  74. Barlow JL, McKenzie AN. Type-2 innate lymphoid cells in human allergic disease. Curr Opin Allergy Clin Immunol. 2014;14:397–403. doi:10.1097/ACI.0000000000000090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134:671–8. doi:10.1016/j.jaci.2014.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lombardi V, Beuraud C, Neukirch C, Moussu H, Morizur L, Horiot S, et al. Circulating innate lymphoid cells are differentially regulated in allergic and nonallergic subjects. J Allergy Clin Immunol. 2016;138:305–8. doi:10.1016/j.jaci.2015.12.1325.

    Article  PubMed  Google Scholar 

  77. Lao-Araya M, Steveling E, Scadding GW, Durham SR, Shamji MH. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134:1193–5. doi:10.1016/j.jaci.2014.07.029.

    Article  PubMed  Google Scholar 

  78. Wambre E, Bonvalet M, Bodo VB, Maillere B, Leclert G, Moussu H, et al. Distinct characteristics of seasonal (Bet v 1) vs. perennial (Der p 1/Der p 2) allergen-specific CD4(+) T cell responses. Clin Exp Allergy. 2011;41:192–203. doi:10.1111/j.1365-2222.2010.03641.x.

    Article  CAS  PubMed  Google Scholar 

  79. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγ(+) T cells. Science. 2015;349:989–93. doi:10.1126/science.aac4263.

    Article  CAS  PubMed  Google Scholar 

  80. Brown SG, Blackman KE, Heddle RJ. Can serum mast cell tryptase help diagnose anaphylaxis? Emerg Med Australas. 2004;16:120–4. doi:10.1111/j.1742-6723.2004.00562.x.

    Article  PubMed  Google Scholar 

  81. Rank MA, Kita H, Li JT, Butterfield JH. Systemic reactions to allergen immunotherapy: a role for measuring a PGD2 metabolite? Ann Allergy Asthma Immunol. 2013;110:57–8. doi:10.1016/j.anai.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  82. Virkud YV, Burks AW, Steele PH, Edwards LJ, Berglund JP, Jones SM, et al. Novel baseline predictors of allergic side effects during peanut oral immunotherapy. J Allergy Clin Immunol. 2016; doi:10.1016/j.jaci.2016.07.030.

    Google Scholar 

  83. Ballmer-Weber BK, Lidholm J, Fernandez-Rivas M, Seneviratne S, Hanschmann KM, Vogel L, et al. IgE recognition patterns in peanut allergy are age dependent: perspectives of the EuroPrevall study. Allergy. 2015;70:391–407. doi:10.1111/all.12574.

    Article  CAS  PubMed  Google Scholar 

  84. Romano A, Scala E, Rumi G, Gaeta F, Caruso C, Alonzi C, et al. Lipid transfer proteins: the most frequent sensitizer in Italian subjects with food-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2012;42:1643–53. doi:10.1111/cea.12011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Moingeon PhD.

Ethics declarations

Conflict of Interest

Dr. Philippe Moingeon is an employee at Stallergenes SAS, outside of the submitted work.

Human and Animal Rights and Informed Consent

This review article does not contain any studies performed with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Specific Immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moingeon, P. Update on Biomarkers to Predict Responders to Allergen Immunotherapy. Curr Treat Options Allergy 4, 30–42 (2017). https://doi.org/10.1007/s40521-017-0113-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-017-0113-9

Keywords

Navigation