Role of bone-forming agents in the management of osteoporosis

Abstract

Recent evidence confirms the superiority of osteoanabolic therapy compared to anti-remodeling drugs for rapid improvement in bone density and fracture risk reduction, providing strong justification for the use of these anabolic agents as the initial therapy in high-risk patients, to be followed by anti-remodeling therapy. This review will highlight the results of recent studies and define the current status of osteoanabolic therapy for osteoporosis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. The Lancet 393:364–376

    CAS  Article  Google Scholar 

  2. 2.

    Kanis JA, Cooper C, Rizzoli R et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Camacho PM, Petak SM, Binkley N et al (2020) American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 Update. Endocr Pract 26:1–46

    PubMed  Article  Google Scholar 

  4. 4.

    Cosman F, Nieves JW, Dempster DW (2017) Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32:198–202

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    McClung MR (2017) Using osteoporosis therapies in combination. Curr Osteoporos Rep 15:343–352

    PubMed  Article  Google Scholar 

  6. 6.

    Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. The study of osteoporotic fractures research group. Lancet (London, England) 341:72–75

    CAS  Article  Google Scholar 

  7. 7.

    Ferrari S, Libanati C, Lin CJF et al (2019) Relationship between bone mineral density T-score and nonvertebral fracture risk over 10 years of denosumab treatment. J Bone Miner Res 34:1033–1040

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cosman F, Lewiecki EM, Ebeling PR et al (2020) T-Score as an Indicator of Fracture Risk During Treatment With Romosozumab or Alendronate in the ARCH Trial. J Bone Miner Res. 35:1333–1342

    CAS  Article  Google Scholar 

  9. 9.

    Bouxsein ML, Eastell R, Lui LY et al (2019) Change in bone density and reduction in fracture risk: a meta-regression of published trials. J Bone Miner Res 34:632–642

    Article  Google Scholar 

  10. 10.

    Kanis JA, Harvey NC, McCloskey E et al (2020) Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int 31:1–12

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kanis JA, Harvey NC, Johansson H et al (2020) A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196

    PubMed  Article  Google Scholar 

  12. 12.

    Minisola S, Cipriani C, Grotta GD et al (2019) Update on the safety and efficacy of teriparatide in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 11:1759720

    Article  Google Scholar 

  13. 13.

    Sleeman A, Clements JN (2019) Abaloparatide: a new pharmacological option for osteoporosis. Am J Health Syst Pharm 76:130–135

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    McClung MR (2018) Romosozumab for the treatment of osteoporosis. Osteoporos Sarcopenia 4:11–15

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Kaveh S, Hosseinifard H, Ghadimi N et al (2020) Efficacy and safety of Romosozumab in treatment for low bone mineral density: a systematic review and meta-analysis. Clin Rheumatol. https://doi.org/10.1007/s10067-020-04948-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hodsman AB, Bauer DC, Dempster DW et al (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Marcus R (2011) Present at the beginning: a personal reminiscence on the history of teriparatide. Osteoporos Int 22:2241–2248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Dobnig H, Turner RT (1997) The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138:4607–4612

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Silva BC, Costa AG, Cusano NE et al (2011) Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 34:801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bellido T, Saini V, Pajevic PD (2013) Effects of PTH on osteocyte function. Bone 54:250–257

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Reeve J, Hesp R, Williams D et al (1976) Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet (London, England) 1:1035–1038

    CAS  Article  Google Scholar 

  23. 23.

    Reeve J, Meunier PJ, Parsons JA et al (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. BMJ 280:1340–1344

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Slovik DM, Neer RM, Potts JT Jr (1981) Short-term effects of synthetic human parathyroid hormone (1-34) administration on bone mineral metabolism in osteoporotic patients. J Clin Invest 68:1261–1271

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Cosman F, Shen V, Xie F et al (1993) Estrogen protection against bone resorbing effects of parathyroid hormone infusion Assessment by use of biochemical markers. Ann Intern Med 118:337–343

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Lindsay R, Nieves J, Formica C et al (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350:550–555

    CAS  Article  Google Scholar 

  27. 27.

    Lane NE, Sanchez S, Modin GW et al (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New Engl J Med 344:1434–1441

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Lindsay R, Scheele WH, Neer R et al (2004) Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 164:2024–2030

    PubMed  Article  Google Scholar 

  30. 30.

    Prince R, Sipos A, Hossain A et al (2005) Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20:1507–1513

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Silverman S, Miller P, Sebba A et al (2013) The direct assessment of nonvertebral fractures in community experience (DANCE) study: 2-year nonvertebral fragility fracture results. Osteoporos Int 24:2309–2317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Cosman F, Nieves JW, Zion M et al (2009) Retreatment with teriparatide one year after the first teriparatide course in patients on continued long-term alendronate. J Bone Miner Res 24:1110–1115

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Finkelstein JS, Wyland JJ, Leder BZ et al (2009) Effects of teriparatide retreatment in osteoporotic men and women. J Clin Endocrinol Metab 94:2495–2501

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Mana DL, Zanchetta MB, Zanchetta JR (2017) Retreatment with teriparatide: our experience in three patients with severe secondary osteoporosis. Osteoporos Int 28:1491–1494

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Jiang Y, Zhao JJ, Mitlak BH et al (2003) Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316:722–733

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Moreira CA, Fitzpatrick LA, Wang Y et al (2016) Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: the ACTIVE phase 3 trial. Bone 97:314–319

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Dempster DW, Zhou H, Recker RR et al (2018) Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res 33:298–306

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Arlot M, Meunier PJ, Boivin G et al (2005) Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res 20:1244–1253

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Gatti D, Viapiana O, Idolazzi L et al (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96:1555–1559

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Jolette J, Attalla B, Varela A et al (2017) Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1-34). Regul Toxicol Pharmacol 86:356–365

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Andrews EB, Gilsenan AW, Midkiff K et al (2012) The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res 27:2429–2437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Cosman F, Lane NE, Bolognese MA et al (2010) Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrinol Metab 95:151–158

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Pearson RG, Masud T, Blackshaw E et al (2019) Nasal administration and plasma pharmacokinetics of parathyroid hormone peptide PTH 1-34 for the treatment of osteoporosis. Pharmaceutics 11:265

    CAS  PubMed Central  Article  Google Scholar 

  45. 45.

    Nakamura T, Sugimoto T, Nakano T et al (2012) Randomized teriparatide [human parathyroid hormone (PTH) 1-34] once-weekly efficacy research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab 97:3097–3106

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Nakano T, Shiraki M, Sugimoto T et al (2014) Once-weekly teriparatide reduces the risk of vertebral fracture in patients with various fracture risks: subgroup analysis of the Teriparatide Once-Weekly Efficacy Research (TOWER) trial. J Bone Min Metab 32:441–446

    CAS  Article  Google Scholar 

  47. 47.

    Hagino H, Narita R, Yokoyama Y et al (2019) A multicenter, randomized, rater-blinded, parallel-group, phase 3 study to compare the efficacy, safety, and immunogenicity of biosimilar RGB-10 and reference once-daily teriparatide in patients with osteoporosis. Osteoporos Int 30:2027–2037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Pfenex. FDA Approves Bonsity (teriparatide injection) to Treat Osteoporosis (2019). https://www.drugs.com/newdrugs/fda-approves-bonsity-teriparatide-osteoporosis-5072.html. Accessed June 29, 2020

  49. 49.

    Company ELa. FORTEO Presecribing Information (2020). https://uspl.lilly.com/forteo/forteo.html#pi. Accessed June 29, 2020

  50. 50.

    Greenspan SL, Bone HG, Ettinger MP et al (2007) Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 146:326–339

    PubMed  Article  Google Scholar 

  51. 51.

    Agency EM. Preotact (2014) [updated 02/07/2014. https://www.ema.europa.eu/en/medicines/human/EPAR/preotact. Accessed August 25, 2020

  52. 52.

    Hattersley G, Dean T, Corbin BA et al (2016) Binding selectivity of abaloparatide for PTH-Type-1-receptor conformations and effects on downstream signaling. Endocrinology 157:141–149

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Bahar H, Gallacher K, Downall J et al (2016) Six weeks of daily abaloparatide treatment increased vertebral and femoral bone mineral density, microarchitecture and strength in ovariectomized osteopenic rats. Calcif Tissue Int 99:489–499

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Varela A, Chouinard L, Lesage E et al (2017) One year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in osteopenic ovariectomized rats without increasing bone resorption. J Bone Miner Res 32:24–33

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Doyle N, Varela A, Haile S et al (2018) Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos Int 29:685–697

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Leder BZ, O’Dea LS, Zanchetta JR et al (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100:697–706

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Cosman F, Hattersley G, Hu MY et al (2017) Effects of abaloparatide-sc on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res 32:17–23

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Bilezikian JP, Hattersley G, Mitlak BH et al (2019) Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial. Curr Med Res Opin 35:2097–2102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    McClung MR, Williams GC, Hattersley G et al (2018) Geography of fracture incidence in postmenopausal women with osteoporosis treated with abaloparatide. Calcif Tissue Int 102:627–633

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Dhaliwal R, Hans D, Hattersley G et al (2020) Abaloparatide in postmenopausal women with osteoporosis and type 2 diabetes: a post hoc analysis of the ACTIVE study. JBMR Plus 4:e10346

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Watts NB, Hattersley G, Fitzpatrick LA et al (2019) Abaloparatide effect on forearm bone mineral density and wrist fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 30:1187–1194

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Reginster J, Bianic F, Campbell R et al (2019) Abaloparatide for risk reduction of nonvertebral and vertebral fractures in postmenopausal women with osteoporosis: a network meta-analysis. Osteoporos Int 30:1465–1473

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  63. 63.

    Cosman F, Miller PD, Williams GC et al (2017) Eighteen months of treatment with subcutaneous abaloparatide followed by 6 months of treatment with alendronate in postmenopausal women with osteoporosis: results of the ACTIVExtend trial. Mayo Clin Proc 92:200–210

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Bone HG, Cosman F, Miller PD et al (2018) ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab 103:2949–2957

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Leder B, Zapalowski C, Hu MY et al (2019) Fracture and bone mineral density response by baseline risk in patients treated with abaloparatide followed by alendronate: results from the phase 3 ACTIVExtend Trial. J Bone Miner Res 34:2213–2219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Agency EM. Refusal of the marketing authorisation for Eladynos (abaloparatide) (2017). https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisation-eladynos-abaloparatide_en.pdf. Accessed June 29, 2020

  67. 67.

    Health R. TYMLOS Prescribing Information (2018) https://radiuspharm.com/wp-content/uploads/tymlos/tymlos-prescribing-information.pdf. Accessed June 29, 2020

  68. 68.

    Shirley M (2017) Abaloparatide: first Global Approval. Drugs 77:1363–1368

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Ominsky MS, Niu QT, Li C et al (2014) Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29:1424–1430

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Ominsky MS, Boyce RW, Li X et al (2017) Effects of sclerostin antibodies in animal models of osteoporosis. Bone 96:63–75

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Ominsky MS, Boyd SK, Varela A et al (2017) Romosozumab improves bone mass and strength while maintaining bone quality in ovariectomized cynomolgus monkeys. J Bone Miner Res 32:788–801

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Padhi D, Jang G, Stouch B et al (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Padhi D, Allison M, Kivitz AJ et al (2014) Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J Clin Pharmacol 54:168–178

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    McClung MR, San Martin J, Miller PD et al (2005) Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 165:1762–1768

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    McClung MR, Brown JP, Diez-Perez A et al (2018) Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J Bone Miner Res 33:1397–1406

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Ishibashi H, Crittenden DB, Miyauchi A et al (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 103:209–215

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Stolina M, Dwyer D, Niu QT et al (2014) Temporal changes in systemic and local expression of bone turnover markers during six months of sclerostin antibody administration to ovariectomized rats. Bone 67:305–313

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Boyce RW, Brown D, Felx M et al (2018) Decreased osteoprogenitor proliferation precedes attenuation of cancellous bone formation in ovariectomized rats treated with sclerostin antibody. Bone Rep 8:90–94

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Kendler DL, Bone HG, Massari F et al (2019) Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos Int 30:2437–2448

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. New Engl J Med 375:1532–1543

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Lewiecki EM, Dinavahi RV, Lazaretti-Castro M et al (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME extension study. J Bone Miner Res 34:419–428

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. New Engl J Med 377:1417–1427

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Chavassieux P, Chapurlat R, Portero-Muzy N et al (2019) Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res 34:1597–1608

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. New Engl J Med 370:412–420

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Chouinard L, Felx M, Mellal N et al (2016) Carcinogenicity risk assessment of romosozumab: a review of scientific weight-of-evidence and findings in a rat lifetime pharmacology study. Regulat Toxicol Pharmacol 81:212–222

    CAS  Article  Google Scholar 

  87. 87.

    Amgen. Bone, Reproductive and Urologic Drugs Advisory Committee for Romosozumab Briefing Materials (2019). https://www.fda.gov/media/121255/download. Accessed June 29, 2020

  88. 88.

    Krishna SM, Seto SW, Jose RJ et al (2017) WNT signaling pathway inhibitor sclerostin inhibits angiotensin ii-induced aortic aneurysm and atherosclerosis. Arterioscler Thromb Vasc Biol 37:553–566

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. New Engl J Med 357:1799–1809

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Reid IR, Horne AM, Mihov B et al (2018) Fracture prevention with zoledronate in older women with osteopenia. New Engl J Med 379:2407–2416

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Kim DH, Rogers JR, Fulchino LA et al (2015) Bisphosphonates and risk of cardiovascular events: a meta-analysis. PLoS ONE 10:e0122646

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Kranenburg G, Bartstra JW, Weijmans M et al (2016) Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis 252:106–115

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Food and Drug Administration. Bone Reproductive and Urologic Drugs Advisory Committee (BRUDAC) Meeting, January 29 (2019) https://www.fda.gov/media/112946/download. Accessed June 25, 2020

  94. 94.

    Cummings SR, McCulloch C (2020) Explanations for the difference in rates of cardiovascular events in a trial of alendronate and romosozumab. Osteoporos Int 31:1019–1021

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    European Medicines Agency (2019) Human medicine European public assessment report (EPAR): Evenity, pp. 1–263

  96. 96.

    Amgen. EVENITY Prescribing Information (2019). https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/evenity/evenity_pi_hcp_english.ashx. Accessed June 29, 2020

  97. 97.

    Imaz I, Zegarra P, González-Enríquez J et al (2010) Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: systematic review and meta-analysis. Osteoporos Int 21:1943–1951

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Koller G, Goetz V, Vandermeer B et al (2020) Persistence and adherence to parenteral osteoporosis therapies: a systematic review. Osteoporos Int. https://doi.org/10.1007/s00198-020-05507-9

    Article  PubMed  Google Scholar 

  99. 99.

    Body JJ, Gaich GA, Scheele WH et al (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:4528–4535

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Hadji P, Zanchetta JR, Russo L et al (2012) The effect of teriparatide compared with risedronate on reduction of back pain in postmenopausal women with osteoporotic vertebral fractures. Osteoporos Int 23:2141–2150

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. New Engl J Med 357:2028–2039

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Cosman F, Eriksen EF, Recknor C et al (2011) Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis. J Bone Miner Res 26:503–511

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Leder BZ, Tsai JN, Uihlein AV et al (2014) Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab 99:1694–1700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Kendler DL, Marin F, Zerbini CAF et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet (London, England). 391:230–240

    CAS  Article  Google Scholar 

  105. 105.

    Miller PD, Hattersley G, Lau E et al (2019) Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: results from the ACTIVE phase 3 trial. Bone 120:137–140

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Genant HK, Engelke K, Bolognese MA et al (2017) Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res. 32:181–187

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Keaveny TM, Crittenden DB, Bolognese MA et al (2017) Greater gains in spine and hip strength for romosozumab compared with teriparatide in postmenopausal women with low bone mass. J Bone Miner Res 32:1956–1962

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. The Lancet 390:1585–1594

    CAS  Article  Google Scholar 

  109. 109.

    Leder BZ, Tsai JN, Uihlein AV et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet (London, England). 386:1147–1155

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  110. 110.

    McClung MR, Bolognese MA, Brown JP et al (2020) A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab. Osteoporos Int. https://doi.org/10.1007/s00198-020-05502-0

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Cosman F, Crittenden DB, Ferrari S et al (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Adami S, San Martin J, Munoz-Torres M et al (2008) Effect of raloxifene after recombinant teriparatide [hPTH(1-34)] treatment in postmenopausal women with osteoporosis. Osteoporos Int 19:87–94

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Eastell R, Nickelsen T, Marin F et al (2009) Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res 24:726–736

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Minne H, Audran M, Simões ME et al (2008) Bone density after teriparatide in patients with or without prior antiresorptive treatment: one-year results from the EUROFORS study. Curr Med Res Opin 24:3117–3128

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Boonen S, Marin F, Obermayer-Pietsch B et al (2008) Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93:852–860

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Obermayer-Pietsch BM, Marin F, McCloskey EV et al (2008) Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J Bone Miner Res 23:1591–1600

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Cosman F, Wermers RA, Recknor C et al (2009) Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J Clin Endocrinol Metab 94:3772–3780

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet (London, England). 390:1585–1594

    CAS  Article  Google Scholar 

  119. 119.

    Ravn P, Clemmesen B, Christiansen C (1999) Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate osteoporosis prevention study group. Bone. 24:237–244

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Greenspan SL, Schneider DL, McClung MR et al (2002) Alendronate improves bone mineral density in elderly women with osteoporosis residing in long-term care facilities. A randomized, double-blind, placebo-controlled trial. Ann Int Med 136:742–746

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Chen P, Satterwhite JH, Licata AA et al (2005) Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 20:962–970

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Cosman F, Keaveny TM, Kopperdahl D et al (2013) Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res. 28:1328–1336

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Stepan JJ, Burr DB, Li J et al (2010) Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int 21:2027–2036

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Fahrleitner-Pammer A, Burr D, Dobnig H et al (2016) Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment. Bone 89:16–24

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Miller PD, Bolognese MA, Lewiecki EM et al (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43:222–229

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Fogelman I, Fordham JN, Fraser WD et al (2008) Parathyroid hormone(1-84) treatment of postmenopausal women with low bone mass receiving hormone replacement therapy. Calcif Tissue Int 83:85–92

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Deal C, Omizo M, Schwartz EN et al (2005) Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res 20:1905–1911

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Tsai JN, Uihlein AV, Lee H et al (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet (London, England). 382:50–56

    CAS  PubMed Central  Article  Google Scholar 

  130. 130.

    Tsai JN, Uihlein AV, Burnett-Bowie SA et al (2015) Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT Study. J Bone Miner Res 30:39–45

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Tsai JN, Uihlein AV, Burnett-Bowie SM et al (2016) Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J Clin Endocrinol Metab 101:2023–2030

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Nakamura Y, Suzuki T, Kamimura M et al (2017) Two-year clinical outcome of denosumab treatment alone and in combination with teriparatide in Japanese treatment-naive postmenopausal osteoporotic women. Bone Res 5:16055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Suzuki T, Nakamura Y, Kato H (2019) Efficacy of 4-year denosumab treatment alone or in combination with teriparatide in Japanese postmenopausal osteoporotic women. Mod Rheumatol 29:676–681

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Tsai JN, Lee H, David NL et al (2019) Combination denosumab and high dose teriparatide for postmenopausal osteoporosis (DATA-HD): a randomised, controlled phase 4 trial. Lancet Diabetes Endocrinol 7:767–775

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Idolazzi L, Rossini M, Viapiana O et al (2016) Teriparatide and denosumab combination therapy and skeletal metabolism. Osteoporos Int 27:3301–3307

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Lou S, Lv H, Yin P et al (2019) Combination therapy with parathyroid hormone analogs and antiresorptive agents for osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 30:59–70

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Albert SG, Reddy S (2017) Clinical evaluation and cost efficacy of drugs for treatment of osteoporosis: a meta-analysis. Endocr Pract 23:841–856

    PubMed  Article  Google Scholar 

  138. 138.

    Mori T, Crandall CJ, Ganz DA (2019) Cost-effectiveness of sequential teriparatide/alendronate versus alendronate-alone strategies in highrisk osteoporotic women in the US: analyzing the impact of generic/biosimilar teriparatide. JBMR Plus 3:e10233

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Davis S, Simpson E, Hamilton J et al (2020) Denosumab, raloxifene, romosozumab and teriparatide to prevent osteoporotic fragility fractures: a systematic review and economic evaluation. Health Technol Assess 24:1–314

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Hiligsmann M, Williams SA, Fitzpatrick LA et al (2020) Cost-effectiveness of sequential treatment with abaloparatide followed by alendronate vs. alendronate monotherapy in women at increased risk of fracture: A US payer perspective. Semin Arthr Rheumat. 50:394–400

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Hiligsmann M, Williams SA, Fitzpatrick LA et al (2019) Cost-effectiveness of sequential treatment with abaloparatide vs. teriparatide for United States women at increased risk of fracture. Seminars Arthritis Rheum. 49:184–196

    CAS  Article  Google Scholar 

  142. 142.

    Le QA, Hay JW, Becker R et al (2019) Cost-effectiveness analysis of sequential treatment of abaloparatide followed by alendronate versus teriparatide followed by alendronate in postmenopausal women with osteoporosis in the United States. Ann Pharm 53:134–143

    CAS  Google Scholar 

  143. 143.

    Orwoll ES, Scheele WH, Paul S et al (2003) The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Kaufman JM, Orwoll E, Goemaere S et al (2005) Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int 16:510–516

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Lewiecki EM, Blicharski T, Goemaere S et al (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103:3183–3193

    PubMed  Article  Google Scholar 

  146. 146.

    Chandler H, Brooks DJ, Hattersley G et al (2019) Abaloparatide increases bone mineral density and bone strength in ovariectomized rabbits with glucocorticoid-induced osteopenia. Osteoporos Int 30:1607–1616

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Cohen A, Stein EM, Recker RR et al (2013) Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study. J Clin Endocrinol Metab 98:1971–1981

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Nishiyama KK, Cohen A, Young P et al (2014) Teriparatide increases strength of the peripheral skeleton in premenopausal women with idiopathic osteoporosis: a pilot HR-pQCT study. J Clin Endocrinol Metab 99:2418–2425

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Hong N, Kim JE, Lee SJ et al (2018) Changes in bone mineral density and bone turnover markers during treatment with teriparatide in pregnancy- and lactation-associated osteoporosis. Clin Endocrinol 88:652–658

    CAS  Article  Google Scholar 

  150. 150.

    Bernhardsson M, Aspenberg P (2018) Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthop 89:674–677

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Lanske B, Chandler H, Pierce A et al (2019) Abaloparatide, a PTH receptor agonist with homology to PTHrP, enhances callus bridging and biomechanical properties in rats with femoral fracture. J Orthopaed Res 37:812–820

    CAS  Article  Google Scholar 

  152. 152.

    Feng G, Chang-Qing Z, Yi-Min C et al (2015) Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol 24:7–13

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  153. 153.

    Ominsky MS, Li C, Li X et al (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. JJ Bone Miner Res 26:1012–1021

    CAS  Article  Google Scholar 

  154. 154.

    Aspenberg P, Genant HK, Johansson T et al (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Bhandari M, Schemitsch EH, Karachalios T et al (2020) Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture: a randomized phase-2 study. J Bone Joint Surg Am 102:1416–1426

    PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Schemitsch EH, Miclau T, Karachalios T et al (2020) A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am 102:693–702

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

Funding None reported.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael R. McClung.

Ethics declarations

Conflicts of interest

The author states that he receives consulting fees from Amgen and Myovant and honorarium for speaking from Amgen.

Statement of human and animal rights

For this review article, no novel, original human participant or animal studies were performed.

Informed consent

For this review article, formal consent of participants was not required.

Role of the author

The author personally performed the literature search and wrote the review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McClung, M.R. Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res (2021). https://doi.org/10.1007/s40520-020-01708-8

Download citation

Keywords

  • Osteoporosis
  • Osteoanabolic
  • Abaloparatide
  • Romosozumab
  • Teriparatide
  • Sequence