Differences between muscle from osteoporotic and osteoarthritic subjects: in vitro study by diffusion-tensor MRI and histological findings



Osteoarthritis and osteoporosis are strongly coupled with alterations of muscles quality and fats metabolism. However, there are no studies for investigating possible differences between osteoporotic and osteoarthritic muscles. Understanding muscle-bone and muscle-cartilage interactions would be of high clinical value.


Investigate potential microstructural and physiological differences between osteoporotic and osteoarthritic muscles by diffusion Nuclear Magnetic Resonance (NMR) imaging (diffusion MRI) and histological findings.


Vastus-lateralis muscles excised from osteoporotic (n = 26, T Score <  − 2.5, Kellgren–Lawrence ≤ 2) and osteoarthritic (n = 26, T Score >  − 2.5, Kellgren-–Lawrence 3 and 4) age-matched women were investigated by NMR relaxometry, diffusion-tensor imaging (DTI) at 9.4 T, and histological techniques. Intramyocellular (IMCL) and extramyocellular (EMCL) lipid were quantified. The percentage and mean diameters of fibers I and II were evaluated. Relationship between mean diffusivity (MD), fractional anisotropy (FA), the DTI eigenvalues (λ1, λ2, λ3), histological findings in muscles and clinical data (Kellgren–Lawrence and T score, age, menopausal age, body mass index) were studied. Pairwise comparisons between groups were made using one-way analysis of variance and correlation between variables was assessed with linear correlation analysis (Pearson’s r coefficient).


Osteoporotic muscles showed higher MD, λ1, λ2, λ3 compared to osteoarthritis ones. This is explainable with a significant higher density of IMCL droplets found inside the osteoarthritic muscles and a large amount of fibrotic tissue and IMCL infiltration between fibers, i.e. in endomysium and perimysium that lead to a more hindered diffusion. Furthermore, histological analysis suggests mitochondrial degeneration as the origin of the greatest amount of IMCL droplets in osteoarthritic muscles.


This work highlights differences between muscles of osteoporotic and osteoarthritic subjects that can be quantified by NMR DTI investigations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    WHO Study Group (2003) Prevention and management of osteoporosis. Report of a WHO Study Group WHO Tec Rep Ser 921:1–204

    Google Scholar 

  2. 2.

    Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    CAS  PubMed  Google Scholar 

  3. 3.

    Yeung DKW, Griffith JF, Antonio GE et al (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 2005:279–285

    Google Scholar 

  4. 4.

    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    PubMed  Google Scholar 

  5. 5.

    Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12:235–242

    PubMed  Google Scholar 

  6. 6.

    Schwartz AV (2015) Marrow fat and bone: review of clinical findings. Front Endocrinol 6:40

    CAS  Google Scholar 

  7. 7.

    Di Pietro G, Capuani S, Manenti G et al (2016) Bone marrow lipid profiles from peripheral skeleton as potential biomarkers for osteoporosis: a 1H-MR spectroscopy study. Acad Radiol 23:273–283

    PubMed  Google Scholar 

  8. 8.

    Kumar D, Karampinos DC, MacLeod TD et al (2014) Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis. Osteoarthritis Cartilage 22:226–234

    CAS  PubMed  Google Scholar 

  9. 9.

    Bonaccorsi G, Cafarelli FP, Cervellati C et al (2019) A new corrective model to evaluate TBS in obese post- menopausal women: a cross-sectional study. Aging Clin Exp Res. https://doi.org/10.1007/s40520-019-01317-0

    Article  PubMed  Google Scholar 

  10. 10.

    Collins KH, Herzog W, MacDonald GZ et al (2018) Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol. 9:112. https://doi.org/10.3389/fphys.2018.00112

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Davison MJ, Maly MR, Adachi JD et al (2017) Relationships between fatty infiltration in the thigh and calf in women with knee osteoarthritis. Aging Clin Exp Res 29:291–299

    PubMed  Google Scholar 

  12. 12.

    Jordan GR, Loveridge N, Bell KL et al (2003) Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone 32:86–95

    CAS  PubMed  Google Scholar 

  13. 13.

    Capuani S, Piccirilli E, Di Pietro G et al (2013) Microstructural differences between osteoporotic and osteoarthritic femoral cancellous bone: an in vitro magnetic resonance micro-imaging investigation. Aging Clinic Experiment Res 25:51–54

    Google Scholar 

  14. 14.

    Terracciano C, Celi M, Lecce D et al (2013) Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos Int 24:1095–1100

    CAS  PubMed  Google Scholar 

  15. 15.

    Scimeca M, Bonanno E, Piccirilli E et al (2015) Satellite cells CD44 positive drive muscle regeneration in osteoarthritis patients. Stem Cells Int 469459.

  16. 16.

    Zhang Y, Guo J, Duanmu Y et al (2019) Quantitative analysis of modified functional muscle-bone unit and back muscle density in patients with lumbar vertebral fracture in Chinese elderly men: a case-control study. Aging Clin Exp Res 31:637–644

    PubMed  Google Scholar 

  17. 17.

    Arokoski MH, Arokoski JPA, Haara M et al (2002) Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol 29:2185–2195

    PubMed  Google Scholar 

  18. 18.

    Zhai G, Blizzard L, Srikanth V et al (2006) Correlates of knee pain in older adults: Tasmanian older adult cohort study. Arthritis Rheum. 55:264–271

    PubMed  Google Scholar 

  19. 19.

    Scott D, Blizzard L, Fell J et al (2012) Prospective study of self-reported pain, radiographic osteoarthritis, sarcopenia progression, and falls risk in community-dwelling older adults. Arthritis Care Res (Hoboken) 64:30–37

    Google Scholar 

  20. 20.

    Di Monaco M, Vallero F, Di Monaco R, et al (2011) Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch. Gerontol Geriatr 52:71–74

    PubMed  Google Scholar 

  21. 21.

    Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213:109–219

    Google Scholar 

  22. 22.

    Damon BM, Ding Z, Anderson AW et al (2002) Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 48:97–104

    PubMed  Google Scholar 

  23. 23.

    Karampinos DC, King KF, Sutton BP et al (2009) Myofiber ellipticity as an explanation for transverse asymmetry of skeletal muscle diffusion MRI in vivo signal. Ann Biomed Eng 37:2532–2546

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Galbán CJ, Maderwald S, Uffmann K et al (2004) Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262

    PubMed  Google Scholar 

  25. 25.

    Galbán CJ, Maderwald S, Uffmann K et al (2005) A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 18:489–498

    PubMed  Google Scholar 

  26. 26.

    McMillan AB, Shi D, Pratt SJP et al (2011) Diffusion tensor MRI to assess damage in healthy and dystrophic skeletal muscle after lengthening contractions. J Biomed Biotechnol 970726.

  27. 27.

    Sigmund EE, Sui D, Ukpebor O et al (2013) Stimulated echo diffusion tensor imaging and SPAIR T2-weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging 38:1073–1082

    PubMed  Google Scholar 

  28. 28.

    Heemskerk AM, Strijkers GJ, Drost MR et al (2007) Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 243:413–421

    PubMed  Google Scholar 

  29. 29.

    Kanis JA, Glüer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202

    CAS  PubMed  Google Scholar 

  30. 30.

    Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    PubMed  Google Scholar 

  31. 31.

    Kellgren J, Lawrence J (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dubowitz V, Sewry CA, Lane RJ (2007) Muscle biopsy: a practical approach. Elsevier Health Sciences.

  33. 33.

    Gouzi F, Maury J, Molinari N (2013) Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years old: a systematic review and metaanalysis. J Appl Physiol 115:346–354

    PubMed  Google Scholar 

  34. 34.

    Scheel M, von Roth P, Winkler T (2013) Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed 26:1220–1224

    PubMed  Google Scholar 

  35. 35.

    Scimeca M, Orlandi A, Terrenato I et al (2014) Assessment of metal contamination in a non-small cell lung cancer by EDX microanalysis. Eur J Histochem 58:2403

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    De Santis S, Rebuzzi M, Di Pietro G et al (2010) In vitro and in vivo MR evaluation of internal gradient to assess trabecular bone density. Phys Med Biol 55:5767–5785

    PubMed  Google Scholar 

  38. 38.

    Xiao L, Wu EX (2011) Diffusion-weighted magnetic resonance spectroscopy: a novel approach to investigate intramyocellular lipids. Magn Reson Med 66:937–944

    CAS  PubMed  Google Scholar 

  39. 39.

    Steidle G, Eibofner F, Schick F (2011) Quantitative diffusion imaging of adipose tissue in the human lower leg at 1.5 T Magn Reson Med 65:1118–1124.

  40. 40.

    Weber MA (ed) (2014) Magnetic resonance imaging of the skeletal musculature. Springer, Heidelberg

    Google Scholar 

  41. 41.

    Galbán CJ, Maderwald S, Stock F et al (2007) Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol A Biol Sci Med Sci 62:453–458

    PubMed  Google Scholar 

  42. 42.

    Zhang J, Zhang G, Morrison B (2008) Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Exp Neurol 212:448–457

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Milner DJ, Mavroidis M, Weisleder N et al (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169

    CAS  PubMed  Google Scholar 

  45. 45.

    Fulle S, Protasi F, Di Tano G et al (2004) The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol 39:17–24

    CAS  PubMed  Google Scholar 

  46. 46.

    Barja G (2014) The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci 127:1–27

    CAS  PubMed  Google Scholar 

  47. 47.

    Marzetti E, Calvani R, Cesari M et al (2013) Mitochondrial dysfunction and sarcopenia of aging: from signalling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Scimeca M, Salustri A, Bonanno E et al (2017) Impairment of PTX3 expression in osteoblasts: a key element for osteoporosis. Cell Death Dis 8:e3125

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Appell HJ (1990) Muscular atrophy following immobilization: a review. Sports Med 10:42–45

    CAS  PubMed  Google Scholar 

  50. 50.

    Bougea A, Papadimas G, Papadopoulos C et al (2016) An Age-related morphometric profile of skeletal muscle in healthy untrained women. J Clin. Med 5:97

    PubMed Central  Google Scholar 

  51. 51.

    Muller FL, Song W, Jang YC et al (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 293:R1159–R1168

    CAS  PubMed  Google Scholar 

  52. 52.

    Tryon LD, Vainshtein A, Memme JM et al (2014) Recent advances in mitochondrial turnover during chronic muscle disuse. Integr Med Res 3:161–171

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Porcari P, Hall MG, Clark CA et al (2018) The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment. NMR Biomed 31:e3881

    Google Scholar 

  54. 54.

    Capuani S, Manenti G, Iundusi R et al (2015) Focus on diffusion MR investigations of musculoskeletal tissue to improve osteoporosis diagnosis: a brief practical review. BioMed Research International. https://doi.org/10.1155/2015/948610

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by Agenzia Spaziale Italiana (ASI) “Studio multidisciplinare degli effetti della microgravità sulle cellule ossee” (SMEMCO). Call for research n. DC-DTE-2011–033.

Author information




All authors meet all criteria for authorship. All authors had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: GDP, UT, and SC. Acquisition of data: GDP, MS, MC, RI, abd EG. Analysis and interpretation of data: GDP, MS, RI, MC, EG, UT, and SC. Drafting of the manuscript. GDP and SC. Critical revision of the manuscript for important intellectual content: GDP, MS, RI, UT, and SC. Statistical analysis: GDP and SC. Obtained funding: UT. Administrative, technical and material support: MC and EG. Study supervision: SC. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Silvia Capuani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was reviewed and approved by the independent ethics committee of Fondazione PTV Policlinico Tor Vergata, Rome, Italy.

Informed consent The present study complied with ethical standards and informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, G., Scimeca, M., Iundusi, R. et al. Differences between muscle from osteoporotic and osteoarthritic subjects: in vitro study by diffusion-tensor MRI and histological findings. Aging Clin Exp Res 32, 2489–2499 (2020). https://doi.org/10.1007/s40520-020-01483-6

Download citation


  • Osteoporosis
  • Osteoarthritis
  • Skeletal muscle
  • IMCL
  • DTI