Exploring the relationship between visuospatial function and age-related deficits in motor skill transfer

Abstract

Background

Generalizing learned information from one motor task to another is critical for effective motor rehabilitation. A recent study demonstrated age-related declines in motor skill transfer, yet findings from other motor learning studies suggest that visuospatial impairments may explain such aging effects.

Aims

The purpose of this secondary analysis was to test whether age-related deficits in motor skill transfer were related to low visuospatial ability.

Methods

Forty-two participants (mean ± SD age: 72.1 ± 9.9 years) were tested on an upper extremity dexterity task before and after 3 days of training on an upper extremity reaching task. Training and control data have been published previously. Prior to training, global cognitive status and specific cognitive domains (visuospatial/executive, attention, and delayed memory) were evaluated using the Montreal Cognitive Assessment.

Results

Backward-stepwise linear regression indicated that the Visuospatial/Executive subtest was related to motor skill transfer (i.e., the amount of change in performance on the untrained motor task), such that participants with higher visuospatial scores improved more on the untrained dexterity task than those with lower scores. Global cognitive status was unrelated to motor skill transfer.

Discussion

Consistent with previous studies showing a positive relationship between visuospatial function and other aspects of motor learning, this secondary analysis indicates that less motor skill transfer among older adults may indeed be due to declines in visuospatial function.

Conclusions

The present study highlights the potential utility of assessing older patients’ visuospatial ability within motor rehabilitation to provide valuable insight into the extent to which they may learn and generalize motor skills through training.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Masiero S, Celia A, Armani M et al (2006) Robot-aided intensive training in post-stroke recovery. Aging Clin Exp Res 18:261–265

    PubMed  Article  Google Scholar 

  2. 2.

    Mohabbati-Kalejahi N, Yazdi MAA, Megahed FM et al (2017) Streamlining science with structured data archives: insights from stroke rehabilitation. Scientometrics 113:969–983. https://doi.org/10.1007/s11192-017-2482-z

    Article  Google Scholar 

  3. 3.

    McLafferty FS, Barmparas G, Ortega A et al (2016) Predictors of improved functional outcome following inpatient rehabilitation for patients with traumatic brain injury. NeuroRehabilitation 39:423–430. https://doi.org/10.3233/NRE-161373

    PubMed  Article  Google Scholar 

  4. 4.

    Frankel JE, Marwitz JH, Cifu DX et al (2006) A follow-up study of older adults with traumatic brain injury: taking into account decreasing length of stay. Arch Phys Med Rehabil 87:57–62. https://doi.org/10.1016/j.apmr.2005.07.309

    PubMed  Article  Google Scholar 

  5. 5.

    Mosenthal AC, Livingston DH, Lavery RF et al (2004) The effect of age on functional outcome in mild traumatic brain injury: 6-month report of a prospective multicenter trial. J Trauma 56:1042–1048

    PubMed  Article  Google Scholar 

  6. 6.

    Rodrigue KM, Kennedy KM, Raz N (2005) Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. J Gerontol B Psychol Sci Soc Sci 60:P174–P181

    PubMed  Article  Google Scholar 

  7. 7.

    Shea C, Jin-Hoon P (2006) Age-related effects in sequential motor learning. Phys Ther 86:478–488

    PubMed  Article  Google Scholar 

  8. 8.

    Schmidt R, Lee T (2005) Motor control and learning: a behavioral emphasis, 4th edn. Human Kinetics, Champaign

    Google Scholar 

  9. 9.

    Schaefer SY, Dibble LE, Duff K (2015) Efficacy and feasibility of functional upper extremity task-specific training for older adults with and without cognitive impairment. Neurorehabil Neural Repair 29:636–644. https://doi.org/10.1177/1545968314558604

    PubMed  Article  Google Scholar 

  10. 10.

    Walter CS, Hengge CR, Lindauer BE et al (2019) Declines in motor transfer following upper extremity task-specific training in older adults. Exp Gerontol 116:14–19. https://doi.org/10.1016/j.exger.2018.12.012

    PubMed  Article  Google Scholar 

  11. 11.

    Krishna R, Moustafa AA, Eby LA et al (2012) Learning and generalization in healthy aging: implication for frontostriatal and hippocampal function. Cogn Behav Neurol 25:7–15. https://doi.org/10.1097/WNN.0b013e318248ff1b

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Schaefer SY, Duff K (2017) Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment. J Clin Exp Neuropsychol 39:473–484. https://doi.org/10.1080/13803395.2016.1236905

    PubMed  Article  Google Scholar 

  13. 13.

    Lingo VanGilder J, Hengge CR, Duff K et al (2018) Visuospatial function predicts 1-week motor skill retention in cognitively intact older adults. Neurosci Lett 664:139–143. https://doi.org/10.1016/j.neulet.2017.11.032

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Bo J, Seidler RD (2009) Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences. J Neurophysiol 101:3116. https://doi.org/10.1152/jn.00006.2009

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Bendayan R, Piccinin AM, Hofer SM et al (2017) Decline in memory, visuospatial ability, and crystalized cognitive abilities in older adults: normative aging or terminal decline? J Aging Res. https://doi.org/10.1155/2017/6210105

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Muniz-Terrera G, Massa F, Benaglia T et al (2018) Visuospatial reasoning trajectories and death in a study of the oldest old: a formal evaluation of their association. J Aging Health 31:743–759.https://doi.org/10.1177/0898264317753878

    PubMed  Article  Google Scholar 

  17. 17.

    Cumming TB, Churilov L, Linden T et al (2013) Montreal cognitive assessment and mini-mental state examination are both valid cognitive tools in stroke. Acta Neurol Scand 128:122–129. https://doi.org/10.1111/ane.12084

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Walmsley N (2017) The invisible effects of stroke. London stroke nurse competency day. University College London, London

    Google Scholar 

  19. 19.

    Katz S, Downs TD, Cash HR et al (1970) Progress in development of the index of ADL1. Gerontologist 10:20–30

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hopman-Rock M, van Hirtum H, de Vreede P et al (2019) Activities of daily living in older community-dwelling persons: a systematic review of psychometric properties of instruments. Aging Clin Exp Res 31:917–925. https://doi.org/10.1007/s40520-018-1034-6

    PubMed  Article  Google Scholar 

  21. 21.

    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  Google Scholar 

  23. 23.

    Schaefer SY (2015) Preserved motor asymmetry in late adulthood: is measuring chronological age enough? Neuroscience 294:51–59. https://doi.org/10.1016/j.neuroscience.2015.03.013

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Schaefer SY, Patterson CB, Lang CE (2013) Transfer of training between distinct motor tasks after stroke. Neurorehabil Neural Repair 27:602–612. https://doi.org/10.1177/1545968313481279

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Waddell KJ, Birkenmeier RL, Moore JL et al (2014) Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther 68:444–453. https://doi.org/10.5014/ajot.2014.011619

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Page SJ, Sisto S, Levine P et al (2004) Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil 85:14–18

    PubMed  Article  Google Scholar 

  27. 27.

    Toglia JP (1991) Generalization of treatment: a multicontext approach to cognitive perceptual impairment in adults with brain injury. Am J Occup Ther 45:505–516. https://doi.org/10.5014/ajot.45.6.505

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Schaefer SY, Lang CE (2012) Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. J Mot Behav 44:313–327. https://doi.org/10.1080/00222895.2012.708367

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Wittenberg GF, Lovelace CT, Foster DJ et al (2014) Functional neuroimaging of dressing-related skills. Brain Imaging Behav 8:335–345. https://doi.org/10.1007/s11682-012-9204-1

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Horvat M, Croce R, Tomporowski P et al (2013) The influence of dual-task conditions on movement in young adults with and without Down syndrome. Res Dev Disabil 34:3517–3525. https://doi.org/10.1016/j.ridd.2013.06.038

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Godfrey SB, Zhao KD, Theuer A et al (2018) The SoftHand Pro: functional evaluation of a novel, flexible, and robust myoelectric prosthesis. PLoS One 13:e0205653. https://doi.org/10.1371/journal.pone.0205653

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Cheong Y-S, Kim AR, Park E et al (2018) Validity of the Buttoning test in hand disability evaluation of patients with stroke. Ann Rehabil Med 42:18–25. https://doi.org/10.5535/arm.2018.42.1.18

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Soliveri P, Brown RG, Jahanshahi M et al (1992) Effect of practice on performance of a skilled motor task in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:454–460. https://doi.org/10.1136/jnnp.55.6.454

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Schaefer SY, Hengge CR (2016) Testing the concurrent validity of a naturalistic upper extremity reaching task. Exp Brain Res 234:229–240. https://doi.org/10.1007/s00221-015-4454-y

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Toglia J, Fitzgerald KA, O’Dell MW et al (2011) The Mini-Mental State Examination and Montreal Cognitive Assessment in persons with mild subacute stroke: relationship to functional outcome. Arch Phys Med Rehabil 92:792–798. https://doi.org/10.1016/j.apmr.2010.12.034

    PubMed  Article  Google Scholar 

  36. 36.

    Seidler RD (2010) Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev 38:3–9. https://doi.org/10.1097/JES.0b013e3181c5cce7

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Talwar NA, Churchill NW, Hird MA et al (2019) The neural correlates of the Clock–Drawing test in healthy aging. Front Hum Neurosci 13:25. https://doi.org/10.3389/fnhum.2019.00025

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Steele CJ, Scholz J, Douaud G et al (2012) Structural correlates of skilled performance on a motor sequence task. Front Hum Neurosci 6:1–9. https://doi.org/10.3389/fnhum.2012.00289

    Article  Google Scholar 

  39. 39.

    Hoeft F, Barnea-Goraly N, Haas BW et al (2007) More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 27:11960–11965. https://doi.org/10.1523/JNEUROSCI.3591-07.2007

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Vogel SJ, Banks SJ, Cummings JL et al (2015) Concordance of the Montreal Cognitive Assessment with standard neuropsychological measures. Alzheimer’s Dement (Amsterdam, Netherlands) 1:289–294. https://doi.org/10.1016/j.dadm.2015.05.002

    Article  Google Scholar 

  41. 41.

    Moafmashhadi P, Koski L (2013) Limitations for interpreting failure on individual subtests of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol 26:19–28. https://doi.org/10.1177/0891988712473802

    PubMed  Article  Google Scholar 

  42. 42.

    Burton L, Tyson SF (2015) Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility. J Rehabil Med 47:193–203. https://doi.org/10.2340/16501977-1930

    PubMed  Article  Google Scholar 

  43. 43.

    Ridley N, Batchelor J, Draper B et al (2018) Cognitive screening in substance users: diagnostic accuracies of the Mini-Mental State Examination, Addenbrooke’s Cognitive Examination-Revised, and Montreal Cognitive Assessment. J Clin Exp Neuropsychol 40:107–122. https://doi.org/10.1080/13803395.2017.1316970

    PubMed  Article  Google Scholar 

  44. 44.

    Bosco A, Spano G, Caffo AO et al (2017) Italians do it worse. Montreal Cognitive Assessment (MoCA) optimal cut-off scores for people with probable Alzheimer’s disease and with probable cognitive impairment. Aging Clin Exp Res 29:1113–1120. https://doi.org/10.1007/s40520-017-0727-6

    PubMed  Article  Google Scholar 

  45. 45.

    Malek-Ahmadi M, Kora K, O’Connor K et al (2016) Longer self-reported sleep duration is associated with decreased performance on the Montreal cognitive assessment in older adults. Aging Clin Exp Res 28:333–337. https://doi.org/10.1007/s40520-015-0388-2

    PubMed  Article  Google Scholar 

  46. 46.

    Malek-Ahmadi M, O’Connor K, Schofield S et al (2018) Trajectory and variability characterization of the Montreal cognitive assessment in older adults. Aging Clin Exp Res 30:993–998. https://doi.org/10.1007/s40520-017-0865-x

    PubMed  Article  Google Scholar 

  47. 47.

    Fleishman EA, Rich S (1963) Role of kinesthetic and spatial–visual abilities in perceptual-motor learning. J Exp Psychol 66:6–11. https://doi.org/10.1037/h0046677

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Institute on Aging at the National Institutes of Health (K01 AG047926 to SYS and F31 AG062057 to JLV); the Achievement Rewards for College Scientists Foundation (Spetzler Scholarship to JLV), and Health Resources and Services Administration’s Geriatric Workforce Enhancement Program (U1QHP28723 to CSW).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sydney Y. Schaefer.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lingo VanGilder, J., Walter, C.S., Hengge, C.R. et al. Exploring the relationship between visuospatial function and age-related deficits in motor skill transfer. Aging Clin Exp Res 32, 1451–1458 (2020). https://doi.org/10.1007/s40520-019-01345-w

Download citation

Keywords

  • Motor control
  • Rehabilitation
  • Cognitive aging