Key factors involved in obesity development

  • Zhiyou Wang
  • Daixiu Yuan
  • Yehui Duan
  • Shujuan Li
  • Shengzhen Hou


Obesity has been considered to be a chronic disease that requires medical prevention and treatment. Intriguingly, many factors, including adipose tissue dysfunction, mitochondrial dysfunction, alterations in the muscle fiber phenotype and in the gut microbiota composition, have been identified to be involved in the development of obesity and its associated metabolic disorders (in particular type 2 diabetes mellitus). In this narrative review, we will discuss our current understanding of the relationships of these factors and obesity development, and provide a summary of potential treatments to manage obesity.

Level of Evidence Level V, narrative review.


Adipose tissue dysfunction Gut microbiota Mitochondrial dysfunction Myofibers Obesity Type 2 diabetes mellitus 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Gomes SF, Silva FC, Volp ACP (2016) What is the role of inflammatory mediators on energy metabolism? Inflamm Cell Signal 3:e1189. doi: 10.14800/ics.1189 Google Scholar
  2. 2.
    Barra NG (2014) Investigating the role of interleukin-15 in modulating adipose tissue. Medical Sciences. McMaster UniversityGoogle Scholar
  3. 3.
    Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971. doi: 10.1093/eurheartj/ehn387 CrossRefGoogle Scholar
  4. 4.
    Yao K, Duan Y, Li F et al (2016) Leucine in obesity: therapeutic prospects. Trends Pharmacol Sci 37:714–727. doi: 10.1016/ CrossRefGoogle Scholar
  5. 5.
    Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18:59–68. doi: 10.1016/j.molmed.2011.07.010 CrossRefGoogle Scholar
  6. 6.
    Ding SL, Chi MM, Scull BP et al (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5:e12191. doi: 10.1371/journal.pone.0012191 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hojlund K, Mogensen M, Sahlin K, Beck-Nielsen H (2008) Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinol Metab Clin North Am 37:713–731. doi: 10.1016/j.ecl.2008.06.006 CrossRefGoogle Scholar
  8. 8.
    Duan YH, Li FN, Tan B, Yao K, Yin YL (2017) Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev 18:647–659. doi: 10.1111/obr.12530 CrossRefGoogle Scholar
  9. 9.
    Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH (2017) Metabolic adaptation in obesity and type II diabetes: myokines, adipokines and hepatokines. Int J Mol Sci 18:8. doi: 10.3390/ijms18010008 CrossRefGoogle Scholar
  10. 10.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. doi: 10.1016/j.cell.2013.12.012 CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cai H, Dong LLQ, Liu F (2016) Recent advances in adipose mTOR signaling and function: therapeutic prospects. Trends Pharmacol Sci 37:303–317. doi: 10.1016/ CrossRefGoogle Scholar
  12. 12.
    Konige M, Wang H, Sztalryd C (2014) Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. BBA-Mol Basis Dis 1842:393–401. doi: 10.1016/j.bbadis.2013.05.007 CrossRefGoogle Scholar
  13. 13.
    Zechner R, Zimmermann R, Eichmann TO et al (2012) FAT SIGNALS -Lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291. doi: 10.1016/j.cmet.2011.12.018 CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297. doi: 10.1016/j.plipres.2009.05.001 CrossRefGoogle Scholar
  15. 15.
    Talanian JL, Tunstall RJ, Watt MJ et al (2006) Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am J Physio-Reg I 291:R1094–R1099. doi: 10.1152/ajpregu.00130.2006 Google Scholar
  16. 16.
    Rutkowski JM, Stern JH, Scherer PE (2015) The cell biology of fat expansion. J Cell Biol 208:501–512. doi: 10.1083/jcb.201409063 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139. doi: 10.1016/j.mce.2009.08.018 CrossRefGoogle Scholar
  18. 18.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi: 10.1152/physrev.00015.2003 CrossRefGoogle Scholar
  19. 19.
    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. doi: 10.1056/Nejmoa0810780 CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cypess AM, Weiner LS, Roberts-Toler C et al (2015) Activation of human brown adipose tissue by a beta 3-adrenergic receptor agonist. Cell Metab 21:33–38. doi: 10.1016/j.cmet.2014.12.009 CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hanssen MJW, Hoeks J, Brans B et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21:863–865. doi: 10.1038/nm.3891 CrossRefGoogle Scholar
  22. 22.
    McMillan AC, White MD (2015) Induction of thermogenesis in brown and beige adipose tissues: molecular markers, mild cold exposure and novel therapies. Curr Opin Endocrinol Diabetes Obes 22:347–352. doi: 10.1097/MED.0000000000000191 CrossRefGoogle Scholar
  23. 23.
    Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734. doi: 10.1038/nrm3198 CrossRefGoogle Scholar
  24. 24.
    Bleau C, Karelis AD, St-Pierre DH, Lamontagne L (2015) Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabets-Metab Res 31:545–561. doi: 10.1002/dmrr.2617 CrossRefGoogle Scholar
  25. 25.
    Coppack SW, Evans RD, Fisher RM et al (1992) Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41:264–272. doi: 10.1016/0026-0495(92)90269-G CrossRefGoogle Scholar
  26. 26.
    Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033. doi: 10.1210/jc.2006-1055 CrossRefGoogle Scholar
  27. 27.
    Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068. doi: 10.1161/01.ATV.0000183883.72263.13 CrossRefGoogle Scholar
  28. 28.
    Suganami T, Tanimoto-Koyama K, Nishida J et al (2007) Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27:84–91. doi: 10.1161/01.ATV.0000251608.09329.9a CrossRefGoogle Scholar
  29. 29.
    Permana PA, Menge C, Reaven PD (2006) Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 341:507–514. doi: 10.1016/j.bbrc.2006.01.012 CrossRefGoogle Scholar
  30. 30.
    Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF (2002) Tumor necrosis factor alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51:1319–1336. doi: 10.2337/diabetes.51.5.1319 CrossRefGoogle Scholar
  31. 31.
    Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505. doi: 10.1172/JC126498 CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Amano SU, Cohen JL, Vangala P et al (2014) Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 19:162–171. doi: 10.1016/j.cmet.2013.11.017 CrossRefGoogle Scholar
  33. 33.
    Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Interleukins 74:443–477. doi: 10.1016/S0083-6729(06)74018-3 CrossRefGoogle Scholar
  34. 34.
    Roth CL, Kratz M, Ralston MM, Reinehr T (2011) Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism 60:445–452. doi: 10.1016/j.metabol.2010.03.023 CrossRefGoogle Scholar
  35. 35.
    Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789. doi: 10.1016/S0140-6736(63)91500-9 CrossRefGoogle Scholar
  36. 36.
    Jansson PAE, Larsson A, Lonnroth PN (1998) Relationship between blood pressure, metabolic variables and blood flow in obese subjects with or without non-insulin-dependent diabetes mellitus. Eur J Clin Invest 28:813–818CrossRefGoogle Scholar
  37. 37.
    Goossens GH (2008) The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94:206–218. doi: 10.1016/j.physbeh.2007.10.010 CrossRefGoogle Scholar
  38. 38.
    Gardner TW, Abcouwer SF, Barber AJ, Jackson GR (2011) An integrated approach to diabetic retinopathy research. Arch Opthalmol 129:230–235. doi: 10.1001/archophthalmol.2010.362 CrossRefGoogle Scholar
  39. 39.
    Bournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17:446–452. doi: 10.1097/MED CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289. doi: 10.1172/Jci200421752 CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hao Q, Hansen JB, Petersen RK et al (2010) ADD1/SREBP1c activates the PGC1-alpha promoter in brown adipocytes. BBA-Mol Cell Biol L 1801:421–429. doi: 10.1016/j.bbalip.2009.11.008 CrossRefGoogle Scholar
  42. 42.
    Lu RH, Ji H, Chang ZG, Su SS, Yang GS (2010) Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol Biol Rep 37:2173–2182. doi: 10.1007/s11033-009-9695-z CrossRefGoogle Scholar
  43. 43.
    Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. doi: 10.1042/Bj20110162 CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kusminski CM, Scherer PE (2012) Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 23:435–443. doi: 10.1016/j.tem.2012.06.004 CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364–395. doi: 10.1210/er.2009-0027 CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Joseph AM, Joanisse DR, Baillot RG, Hood DA (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabets Res 2012:642038. doi: 10.1155/2012/642038 Google Scholar
  47. 47.
    Kaaman M, Sparks LM, van Harmelen V et al (2007) Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 50:2526–2533. doi: 10.1007/s00125-007-0818-6 CrossRefGoogle Scholar
  48. 48.
    Choudhury S, Ghosh S, Gupta P, Mukherjee S, Chattopadhyay S (2015) Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2-NF-kappaB and SAPK/JNK pathway. Free Radic Res 49:1371–1383. doi: 10.3109/10715762.2015.1075016 CrossRefGoogle Scholar
  49. 49.
    Flachs P, Rossmeisl M, Kuda O, Kopecky J (2013) Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta 1831:986–1003. doi: 10.1016/j.bbalip.2013.02.003 CrossRefGoogle Scholar
  50. 50.
    Petrangeli E, Coroniti G, Brini AT et al (2016) Hypoxia promotes the inflammatory response and stemness features in visceral fat stem cells from obese subjects. J Cell Physiol 231:668–679. doi: 10.1002/jcp.25113 CrossRefGoogle Scholar
  51. 51.
    Lefaucheur L (2010) A second look into fibre typing—relation to meat quality. Meat Sci 84:257–270. doi: 10.1016/j.meatsci.2009.05.004 CrossRefGoogle Scholar
  52. 52.
    Anderson EJ, Yamazaki H, Neufer PD (2007) Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J Biol Chem 282:31257–31266. doi: 10.1074/jbc.M706129200 CrossRefGoogle Scholar
  53. 53.
    Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37. doi: 10.1146/annurev.biochem.75.103004.142622 CrossRefGoogle Scholar
  54. 54.
    Handschin C, Chin S, Li P et al (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021. doi: 10.1074/jbc.M704817200 CrossRefGoogle Scholar
  55. 55.
    Hickey MS, Carey JO, Azevedo JL et al (1995) Skeletal-muscle fiber composition is related to adiposity and in vitro glucose-transport rate in humans. Am J Physiol Endocrinol Metab 268:E453–E457CrossRefGoogle Scholar
  56. 56.
    Song XM, Kawano Y, Krook A et al (1999) Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats. Diabetes 48:664–670. doi: 10.2337/diabetes.48.3.664 CrossRefGoogle Scholar
  57. 57.
    Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A (2001) GLUT4 Is reduced in slow muscle fibers of type 2 diabetic patients. Diabetes 50:1324–1329. doi: 10.2337/diabetes.50.6.1324 CrossRefGoogle Scholar
  58. 58.
    Tanner CJ, Barakat HA, Dohm GL et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282:E1191–E1196. doi: 10.1152/ajpendo.00416.2001 CrossRefGoogle Scholar
  59. 59.
    Canto C, Auwerx J (2009) PGC-1 alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105. doi: 10.1097/MOL.0b013e328328d0a4 CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Akpan I, Goncalves MD, Dhir R et al (2009) The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int J Obes 33:1265–1273. doi: 10.1038/ijo.2009.162 CrossRefGoogle Scholar
  61. 61.
    Guo TQ, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC (2009) Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4:e4937. doi: 10.1371/journal.pone.0004937 CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Izumiya Y, Hopkins T, Morris C et al (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7:159–172. doi: 10.1016/j.cmet.2007.11.003 CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075. doi: 10.1073/pnas.0504978102 CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. doi: 10.1038/nature4441021a CrossRefGoogle Scholar
  65. 65.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi: 10.1038/nature07540 CrossRefGoogle Scholar
  66. 66.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223. doi: 10.1016/j.chom.2008.02.015 CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. doi: 10.1126/scitranslmed.3000322 CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–15723. doi: 10.1073/pnas.0407076101 CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–668. doi: 10.1016/j.cmet.2015.07.026 CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Cani PD, Delzenne NM, Amar J, Burcelin R (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol BIol 56:305–309. doi: 10.1016/j.patbio.2007.09.008 CrossRefGoogle Scholar
  71. 71.
    Bleau C, Karelis AD, St-Pierre DH, Lamontagne L (2015) Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 31:545–561. doi: 10.1002/dmrr.2617 CrossRefGoogle Scholar
  72. 72.
    Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME (2008) Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity 16:1248–1255. doi: 10.1038/oby.2008.210 CrossRefGoogle Scholar
  73. 73.
    Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. doi: 10.1056/Nejm200105033441801 CrossRefGoogle Scholar
  74. 74.
    Dube JJ, Amati F, Toledo FGS et al (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54:1147–1156. doi: 10.1007/s00125-011-2065-0 CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Horie NC, Serrao VT, Simon SS et al (2016) Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J Clin Endocrinol Metab 101:1104–1112. doi: 10.1210/jc.2015-2315 CrossRefGoogle Scholar
  76. 76.
    Johnson ML, Distelmaier K, Lanza IR et al (2016) Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults. Diabetes 65:74–84. doi: 10.2337/db15-0675 Google Scholar
  77. 77.
    Donato J, Jr, Pedrosa RG, Cruzat VF, Pires IS, Tirapegui J (2006) Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition 22:520–527. doi: 10.1016/j.nut.2005.12.008 CrossRefGoogle Scholar
  78. 78.
    Jung SH, Park HS, Kim KS et al (2008) Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem 19:371–375. doi: 10.1016/j.jnutbio.2007.05.007 CrossRefGoogle Scholar
  79. 79.
    Kang EB, Koo JH, Jang YC et al (2016) Neuroprotective effects of endurance exercise against high-fat diet-induced hippocampal neuroinflammation. J Neuroendocrinol. doi: 10.1111/jne.12385 Google Scholar
  80. 80.
    Grayson BE, Fitzgerald MF, Hakala-Finch AP et al (2014) Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. Int J Obes 38:349–356. doi: 10.1038/ijo.2013.100 CrossRefGoogle Scholar
  81. 81.
    Bray GA, Ryan DH (2007) Drug treatment of the overweight patient. Gastroenterology 132:2239–2252. doi: 10.1053/j.gastro.2007.03.053 CrossRefGoogle Scholar
  82. 82.
    Mauro M, Taylor V, Wharton S, Sharma AM (2008) Barriers to obesity treatment. Eur J Intern Med 19:173–180. doi: 10.1016/j.ejim.2007.09.011 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningChina
  2. 2.Department of MedicineJishou UniversityJishouChina
  3. 3.Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-CentralMinistry of AgricultureChangshaChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations