Skip to main content

Advertisement

Log in

Robust Unit Commitment and the Promise of Higher Reliability in Electricity Markets

  • Energy Markets (R Sioshansi and S Mousavian, Section Editors)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Unit commitment (UC), one of the critical tasks in the operations of electricity markets, is an optimization problem in power systems that determine the optimal schedule and dispatch of the generating units in the day-ahead market. UC is a challenging problem due to the many sources of uncertainty such as demand, generators’ failures, transmission lines’ outages, and more importantly, intermittent supply of renewable energy. Comparing with the other uncertainty handling approaches for UC, robust optimization is extensively used to address uncertainty in the UC problem. Robust unit commitment (RUC) results in a higher degree of flexibility and provides a stronger layer of protection against uncertainty for decision makers of the power systems. This research delves into the works done in the RUC problems to shed greater light on existing modeling approaches, definitions of uncertainty, and developed solution methods.

Recent Findings

The review of the literature reveals that the stage-based, the two-stage in particular, is a popular and effective modeling approach in the RUC problems. The stage-based modeling approach is capable of incorporating any source of uncertainty from different components of the electricity markets in its formulation, typically in the form of budgeted uncertainty sets. Furthermore, hybrid decomposition-based algorithms are tested as effective methods for handling the complexity of the RUC problems.

Summary

Exploring uncertainty estimation techniques that offer more flexibility such as chance-constraint modeling is a promising research direction for the RUC problem, particularly in the presence of higher degrees of uncertainty. Failure of a generating facility could tremendously affect the reliability of the operations of the electricity markets. However, this source of uncertainty is not addressed properly in the RUC literature. In addition, stage-based modeling approach has substantial potential to handle the complexity of the RUC problems. Lastly, when the problem size increases, the complexity and computational time increase substantially, so the (meta)heuristics, either as a standalone solution method or in combination with the exact methods, are promising approaches for handling the complexity of RUC models in a reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng QP, Wang J, Liu AL. Stochastic optimization for unit commitment-a review. IEEE Trans Power Syst 2015;30(4):1913–1924.

    Article  Google Scholar 

  2. Feizollahi MJ, Costley M, Ahmed S, Grijalva S. Large-scale decentralized unit commitment. Int J Electr Power Energy Syst 2015;73:97–106.

    Article  Google Scholar 

  3. Chen Y, Wang Q, Wang X, Guan Y. Applying robust optimization to MISO look-ahead commitment. In: PES General Meeting— Conference & Exposition, 2014 IEEE. IEEE; 2014. p. 1–5.

  4. Chen H, Wei G, Xuan P, Xu X. Robust dispatch of power systems with multi-type renewable energy sources. In: Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific. IEEE; 2014/ p. 1–6.

  5. Danandeh A, Wang W, Zeng B, Buckley B. A robust unit commitment model under correlated temperatures and demands. In: North American Power Symposium (NAPS), 2016. IEEE; 2016. p. 1–5.

  6. Zhang S, Song Y, Hu Z, Yao L. Robust optimization method based on scenario analysis for unit commitment considering wind uncertainties. In: Power and Energy Society General Meeting, 2011 IEEE. IEEE; 2011. p. 1–7.

  7. Ye H, Ge Y, Shahidehpour M, Li Z. Uncertainty marginal price, transmission reserve, and day-ahead market clearing with robust unit commitment. IEEE Trans Power Syst 2017;32(3):1782–1795.

    Article  Google Scholar 

  8. Ye H, Wang J, Li Z. MIP Reformulation for max-min problems in two-stage robust SCUC. IEEE Trans Power Syst 2017;32(2):1237–1247.

    Article  Google Scholar 

  9. Xiong P, Jirutitijaroen P, Singh C. A distributionally robust optimization model for unit commitment considering uncertain wind power generation. IEEE Trans Power Syst 2017;32(1):39–49.

    Article  Google Scholar 

  10. Ye H, Ge Y, Shahidehpour M, Li Z. Pricing energy and flexibility in robust security-constrained unit commitment model. In: Power and Energy Society General Meeting (PESGM), 2016 IEEE; 2016. p. 1–5.

  11. Wang C, Liu F, Wang J, Qiu F, Wei W, Mei S, Lei S. Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach. IEEE Trans Power Syst 2017; 32(1):723–733.

    Article  Google Scholar 

  12. Upadhyay A, Hu B, Li J, Wu L. A chance-constrained wind range quantification approach to robust SCUC by determining dynamic uncertainty intervals. CSEE Journal of Power and Energy Systems 2016;2(1):54–64.

    Article  Google Scholar 

  13. Sun D, Zhang L, Su D, Yuan Y. 2017. Two-stage robust security-constrained unit commitment with optimizable interval of uncertain wind power output. Mathematical Problems in Engineering, vol 2017.

  14. Lubin M, Dvorkin Y, Backhaus S. A robust approach to chance constrained optimal power flow with renewable generation. IEEE Trans Power Syst 2016;31(5):3840–3849.

    Article  Google Scholar 

  15. Liu J, Martinez MG, Li B, Mathieu J, Anderson CL. A comparison of robust and probabilistic reliability for systems with renewables and responsive demand. In: 2016 49th Hawaii International Conference on System Sciences (HICSS). IEEE; 2016. p. 2373–2380.

  16. Li Z, Wu W, Zhang B, Wang B. Robust look-ahead power dispatch with adjustable conservativeness accommodating significant wind power integration. IEEE Trans Sustainable Energy 2015;6(3):781–790.

    Article  Google Scholar 

  17. Li Z, Shahidehpour M, Wu W, Zeng B, Zhang B, Zheng W. Decentralized multiarea robust generation unit and tie-line scheduling under wind power uncertainty. IEEE Trans Sustainable Energy 2015;6 (4):1377–1388.

    Article  Google Scholar 

  18. Lei S, Hou Y, Wang X, Liu K. Robust generation dispatch with wind power considering air pollutant dispersion. In: Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society. IEEE; 2015. p. 1–5.

  19. Li C-A, Johnson RB, Svoboda AJ, Tseng C-L, Hsu E. A robust unit commitment algorithm for hydro-thermal optimization. IEEE Trans Power Syst 1998;13(3):1051–1056.

    Article  Google Scholar 

  20. Li Z, Wu W, Zhang B, Wang B. Adjustable robust real-time power dispatch with large-scale wind power integration. IEEE Trans Sustainable Energy 2015;6(2):357–368.

    Article  Google Scholar 

  21. Jiang R, Wang J, Guan Y. Robust unit commitment with wind power and pumped storage hydro. IEEE Trans Power Syst 2012;27(2):800–810.

    Article  Google Scholar 

  22. Jiang H, Zhang S, Hu Z, Song Y, Chiwei Y. Robust optimization method for unit commitment with network losses considering wind uncertainties. In: Power and Energy Society General Meeting, 2012 IEEE. IEEE; 2012. p. 1–5.

  23. Amjady N, Dehghan S, Attarha A, Conejo AJ. Adaptive robust network-constrained AC unit commitment. IEEE Trans Power Syst 2017;32(1):672–683.

    Article  Google Scholar 

  24. Chen Y, Guo Q, Sun H, Li Z, Wu W, Li Z. 2018. A distributionally robust optimization model for unit commitment based on Kullback-Leibler divergence. IEEE Transactions on Power Systems.

  25. Yang J, Zhang N, Kang C, Xia Q. Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty. IEEE Trans Power Syst 2018;33(2):2087–2097.

    Article  Google Scholar 

  26. Yang Y. 2017. Practical robust optimization method for unit commitment of a system with integrated wind resource. Mathematical Problems in Engineering, vol 2017.

  27. Zhang M, Guan Y. 2009. Two-stage robust unit commitment problem. University of Florida, USA.

  28. Wang X, Nieuwesteeg P, Listes O, Bresler S, Ogburn R. A robust look-ahead unit commitment. In: Power and Energy Society General Meeting, 2012 IEEE. IEEE; 2012. p. 1–4.

  29. Zhao C, Wang Q, Guan Y. Two-stage robust optimization for power grid with uncertain demand response. In: IIE Annual Conference, Proceedings. Institute of Industrial and Systems Engineers (IISE). 2012. p. 1.

  30. Jiang R, Zhang M, Li G, Guan Y. Two-stage network constrained robust unit commitment problem. Eur J Oper Res 2014;234(3):751–762.

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu G, Tomsovic K. Robust unit commitment considering uncertain demand response. Electr Power Syst Res 2015;119:126–137.

    Article  Google Scholar 

  32. Sun XA. 2011. Advances in electric power systems: robustness, adaptability, and fairness. Ph.D. dissertation Massachusetts Institute of Technology.

  33. Xiong P, Jirutitijaroen P. An adjustable robust optimization approach for unit commitment under outage contingencies. In: Power and Energy Society General Meeting, 2012 IEEE. IEEE; 2012. p. 1–8.

  34. Wang Q, Watson J-P, Guan Y. Two-stage robust optimization for n-k contingency-constrained unit commitment. IEEE Trans Power Syst 2013;28(3):2366–2375.

    Article  Google Scholar 

  35. Street A, Moreira A, Arroyo JM. Energy and reserve scheduling under a joint generation and transmission security criterion: an adjustable robust optimization approach. IEEE Trans Power Syst 2014;29(1):3–14.

    Article  Google Scholar 

  36. Street A, Oliveira F, Arroyo JM. Contingency-constrained unit commitment with nk security criterion: a robust optimization approach. IEEE Trans Power Syst 2011;26(3):1581–1590.

    Article  Google Scholar 

  37. Wang Q, Wang X, Cheung K, Guan Y, Bresler FSS. A two-stage robust optimization for PJM look-ahead unit commitment. In: PowerTech (POWERTECH), 2013 IEEE Grenoble. IEEE; 2013. p. 1–6.

  38. Pandžić H, Dvorkin Y, Qiu T, Wang Y, Kirschen DS. Toward cost-efficient and reliable unit commitment under uncertainty. IEEE Trans Power Syst 2016;31(2):970–982.

    Article  Google Scholar 

  39. Lorca A, Sun XA, Litvinov E, Zheng T. Multistage adaptive robust optimization for the unit commitment problem. Oper Res 2016;64(1):32–51.

    Article  MathSciNet  MATH  Google Scholar 

  40. Bertsimas D, Litvinov E, Sun XA, Zhao J, Zheng T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans Power Syst 2013;28(1):52–63.

    Article  Google Scholar 

  41. Kashyap P. 2016. Robust optimization of unit commitment problem with renewable resources and electrical energy storage. Ph.D. dissertation Illinois Institute of Technology.

  42. Hu B, Wu L. Robust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourse. IEEE Trans Power Syst 2016;31(2):1407–1419.

    Article  MathSciNet  Google Scholar 

  43. Soroudi A. Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy 2013;61: 262–271.

    Article  Google Scholar 

  44. Aghaei J, Agelidis VG, Charwand M, Raeisi F, Ahmadi A, Nezhad AE, Heidari A. Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Trans Smart Grid 2017;8(5):2296–2304.

    Article  Google Scholar 

  45. Dashti H, Conejo AJ, Jiang R, Wang J. Weekly two-stage robust generation scheduling for hydrothermal power systems. IEEE Trans Power Syst 2016;31(6):4554–4564.

    Article  Google Scholar 

  46. An Y, Zeng B. Exploring the modeling capacity of two-stage robust optimization: variants of robust unit commitment model. IEEE Trans Power Syst 2015;30(1):109–122.

    Article  Google Scholar 

  47. Wang L, Li Q, Ding R, Sun M, Wang G. Integrated scheduling of energy supply and demand in microgrids under uncertainty: a robust multi-objective optimization approach. Energy 2017;130:1–14.

    Article  Google Scholar 

  48. Hu B, Wu L, Guan X, Gao F, Zhai Q. Comparison of variant robust SCUC models for operational security and economics of power systems under uncertainty. Electr Power Syst Res 2016;133:121–131.

    Article  Google Scholar 

  49. Hu B, Wu L, Marwali M. On the robust solution to SCUC with load and wind uncertainty correlations. IEEE Trans Power Syst 2014;29(6):2952–2964.

    Article  Google Scholar 

  50. Hu B, Wu L. Robust SCUC with load and wind uncertain intervals. In: PES General Meeting— Conference & Exposition, 2014 IEEE. IEEE; 2014. p. 1–5.

  51. Dai C, Wu L, Wu H. A multi-band uncertainty set based robust scuc with spatial and temporal budget constraints. IEEE Trans Power Syst 2016;31(6):4988–5000.

    Article  Google Scholar 

  52. Wang X, Jiang C, Li B. Active robust optimization for wind integrated power system economic dispatch considering hourly demand response. Renew Energy 2016;97:798–808.

    Article  Google Scholar 

  53. Jiang R, Wang J, Zhang M, Guan Y. Two-stage minimax regret robust unit commitment. IEEE Trans Power Syst 2013;28(3):2271–2282.

    Article  Google Scholar 

  54. Guan Y, Wang J. Uncertainty sets for robust unit commitment. IEEE Trans Power Syst 2014;29(3):1439–1440.

    Article  MathSciNet  Google Scholar 

  55. Guo L, Bai H. 2015. Method for determining the maximum allowable capacity of wind farm based on box set robust optimization. Mathematical Problems in Engineering, vol 2015.

  56. Lee C, Liu C, Mehrotra S, Shahidehpour M. Modeling transmission line constraints in two-stage robust unit commitment problem. IEEE Trans Power Syst 2014;29(3):1221–1231.

    Article  Google Scholar 

  57. Ye H, Li Z. Robust security-constrained unit commitment with recourse cost requirement. In: Power & Energy Society General Meeting, 2015 IEEE. IEEE; 2015. pp. 1–5.

  58. Ye H, Li Z. Robust security-constrained unit commitment and dispatch with recourse cost requirement. IEEE Trans Power Syst 2016;31(5):3527–3536.

    Article  Google Scholar 

  59. Zhao C, Guan Y. Unified stochastic and robust unit commitment. IEEE Trans Power Syst 2013;28(3): 3353–3361.

    Article  Google Scholar 

  60. Jiang R, Zhang M, Li G, Guan Y. Benders’ decomposition for the two-stage security constrained robust unit commitment problem. In: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE). 2012. pp. 1.

  61. He C, Wu L, Liu T, Shahidehpour M. Robust co-optimization scheduling of electricity and natural gas systems via ADMM. IEEE Trans Sustainable Energy 2017;8(2):658–670.

    Article  Google Scholar 

  62. Zugno M, Morales JM, Madsen H. Commitment and dispatch of heat and power units via affinely adjustable robust optimization. Comput Oper Res 2016;75:191–201.

    Article  MathSciNet  MATH  Google Scholar 

  63. Feizollahi MJ, Ahmed S, Modarres M. The robust redundancy allocation problem in series-parallel systems with budgeted uncertainty. IEEE Trans Reliab 2014;63(1):239–250.

    Article  Google Scholar 

  64. Duan C, Jiang L, Fang W, Liu J. Data-driven affinely adjustable distributionally robust unit commitment. IEEE Trans Power Syst 2018;33(2):1385–1398.

    Article  Google Scholar 

  65. Hu B, Wu L. Robust SCUC with multi-band nodal load uncertainty set. IEEE Trans Power Syst 2016;31 (3):2491–2492.

    Article  Google Scholar 

  66. Zhao C, Wang J, Watson J-P, Guan Y. Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans Power Syst 2013;28(3):2708–2717.

    Article  Google Scholar 

  67. Zhao L, Zeng B. Robust unit commitment problem with demand response and wind energy. In: Power and Energy Society General Meeting, 2012 IEEE. IEEE; 2012. pp. 1–8.

  68. Lima RM, Novais AQ, Conejo AJ. Weekly self-scheduling, forward contracting, and pool involvement for an electricity producer. an adaptive robust optimization approach. Eur J Oper Res 2015;240(2):457–475.

    Article  MathSciNet  MATH  Google Scholar 

  69. Jin H, Li Z, Sun H, Guo Q, Chen R, Wang B. A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment. Appl Energy 2017;206: 1364–1378.

    Article  Google Scholar 

  70. Tahanan M, Van Ackooij W, Frangioni A, Lacalandra F. Large-scale unit commitment under uncertainty. 4OR 2015;13(2):115–171.

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhao C, Jiang R. Distributionally robust contingency-constrained unit commitment. IEEE Trans Power Syst 2018;33(1):94–102.

    Article  Google Scholar 

  72. Kherameh AE, Aien M, Rashidinejad M, Fotuhi-Firouzabad M. A particle swarm optimization approach for robust unit commitment with significant vehicle to grid penetration. In: 2014 Iranian Conference on Intelligent Systems (ICIS). IEEE; 2014. pp. 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedamirabbas Mousavian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Energy Markets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabzadeh, S., Feizollahi, M.J. & Mousavian, S. Robust Unit Commitment and the Promise of Higher Reliability in Electricity Markets. Curr Sustainable Renewable Energy Rep 6, 90–99 (2019). https://doi.org/10.1007/s40518-019-00132-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-019-00132-5

Keywords

Navigation