Skip to main content

Advertisement

Log in

Future Trends in District Heating Development

  • Building Sustainability (N Nord, Section Editor)
  • Published:
Current Sustainable/Renewable Energy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article describes challenges that should be overcome towards implementation of low-temperature district heating (LTDH). The trends in development, operational issues, and legislative framework were revised.

Recent Findings

The new substation design with solutions to avoid legionella bacteria issue, improved network topology and control strategies, opportunities of LTDH for buildings under various renovation stages and construction year were identified as the most crucial for the transition to 4th generation district heating (DH). Importance of heat load aggregation to avoid peak load issue in the areas with low-energy buildings (LEB) and solutions for transition from high temperature to low temperatures in the DH network have been shown.

Summary

The findings indicate that there is a huge potential for achieving low-carbon society and improvement in energy efficiency under transition to LTDH. The solutions for transition from high-temperature DH to LTDH exist; however, they need good policies and market availability to be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frederiksen S, Werner S. District heating and cooling. Studentlitteratur: Lund; 2013.

    Google Scholar 

  2. •• Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, et al. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy. 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089. The paper provides full definition of 4th generation of DH technology including the consepts of Smart Energy and Smart Thermal Grids. Very informative article.

    Article  Google Scholar 

  3. Rismanchi B. District energy network (DEN), current global status and future development. Renew Sust Energ Rev. 2017;75:571–9. https://doi.org/10.1016/j.rser.2016.11.025.

    Article  Google Scholar 

  4. •• Lund H, Duic N, Østergaard PA, Mathiesen BV. Smart energy systems and 4th generation district heating. Energy. 2016;110:1–4. https://doi.org/10.1016/j.energy.2016.07.105. This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th generation DH.

    Article  Google Scholar 

  5. Sayegh MA, Danielewicz J, Nannou T, Miniewicz M, Jadwiszczak P, Piekarska K, et al. Trends of European research and development in district heating technologies. Renew Sust Energ Rev. 2017;68:1183–92. https://doi.org/10.1016/j.rser.2016.02.023.

  6. H Lund SW, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, Mathiesen BV. 4th Generation District heating (4GDH). Energy. 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089.

    Article  Google Scholar 

  7. Pirouti M, Bagdanavicius A, Ekanayake J, Wu J, Jenkins N. Energy consumption and economic analyses of a district heating network. Energy. 2013;57:149–59. https://doi.org/10.1016/j.energy.2013.01.065.

    Article  Google Scholar 

  8. European Commission. Energy 2020—a strategy for competitive saseCftCttEP, the council, the European economic and social committee and the committee of the regions. 2015, 1, pp 1689–1699. https://doi.org/10.1017/CBO9781107415324.004, Summary for Policymakers.

  9. Werner S. District heating and cooling in Sweden. Energy. 2017;126:419–29. https://doi.org/10.1016/j.energy.2017.03.052.

    Article  Google Scholar 

  10. Werner S. International review of district heating and cooling. Energy. 2017;137:617–31. https://doi.org/10.1016/j.energy.2017.04.045.

    Article  Google Scholar 

  11. European Parliament and Council. Directive 2010/31/EU of the European parliament and of the council of 19 may 2010 on the energy performance of buildings. Brussels; 2010.

  12. Paiho S, Reda F. Towards next generation district heating in Finland. Renew Sust Energ Rev. 2016;65:915–24.

    Article  Google Scholar 

  13. Blomsterberg Å, Buvik K, Holopainen R, Mortensen A, Peuhkuri P, Svennberg K. Very NorthPass – Low-Energy House Concepts in North European Countries. IEE project number: 08/480/S12.528386 - Promotion of the Very Low-Energy House Concept to the North European Building market, 2012.

  14. Harrestrup M, Svendsen S. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating. Int J Sustain Energy. 2015;34(3–4):232–47.

    Article  Google Scholar 

  15. Sartori I, Wachenfeldt BJ, Hestnes AG. Energy demand in the Norwegian building stock: scenarios on potential reduction. Energy Policy. 2009;37(5):1614–27. https://doi.org/10.1016/j.enpol.2008.12.031.

    Article  Google Scholar 

  16. Werner S and Olsson Ingvarsson L. Building mass used as short term heat storage. In Presented at the 11th International Symposium on District Heating and Cooling, august 31 to september 2, 2008. Reykjavik, Iceland, 2008.

  17. Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández A. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sust Energ Rev. 2011;15(3):1675–95.

    Article  Google Scholar 

  18. Hagentoft C-E, Kalagasidis AS. Effect smart solutions for district heating networks based on energy storage in buildings. Impact on indoor temperatures. Energy Procedia. 2015;78:2244–9. https://doi.org/10.1016/j.egypro.2015.11.346.

    Article  Google Scholar 

  19. Kensby J, Trüschel A, Dalenbäck J-O. Potential of residential buildings as thermal energy storage in district heating systems—results from a pilot test. Appl Energy. 2015;137:773–81. https://doi.org/10.1016/j.apenergy.2014.07.026.

    Article  Google Scholar 

  20. Heier J, Bales C, Martin V. Combining thermal energy storage with buildings—a review. Renew Sust Energ Rev. 2015;42:1305–25. https://doi.org/10.1016/j.rser.2014.11.031.

    Article  Google Scholar 

  21. Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A. Sustainable thermal energy storage technologies for buildings: a review. Renew Sust Energ Rev. 2012;16(5):2394–433. https://doi.org/10.1016/j.rser.2012.01.058.

    Article  Google Scholar 

  22. Thomsen PD, Overbye PM. Energy storage for district energy systems. In: 7 - energy storage for district energy systems A2 -Wiltshire, Robin. Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 145–66.

    Chapter  Google Scholar 

  23. Guelpa E, Barbero G, Sciacovelli A, Verda V. Peak-shaving in district heating systems through optimal management of the thermal request of buildings. Energy. 2017;137:706–14. https://doi.org/10.1016/j.energy.2017.06.107.

    Article  Google Scholar 

  24. Alva G, Lin Y, Fang G. An overview of thermal energy storage systems. Energy. 2018;144:341–78. https://doi.org/10.1016/j.energy.2017.12.037.

    Article  Google Scholar 

  25. Li H, Wang SJ. Load Management in District Heating Operation. Energy Procedia. 2015;75:1202–7. https://doi.org/10.1016/j.egypro.2015.07.155.

    Article  Google Scholar 

  26. Khabdullin A, Khabdullina Z, Khabdullina G, Lauka D, Blumberga D. Demand response analysis methodology in district heating system. Energy Procedia. 2017;128:539–43. https://doi.org/10.1016/j.egypro.2017.09.004.

    Article  Google Scholar 

  27. • Vanhoudt D, Claessens B, Desmedt J, Johansson C. Status of the horizon 2020 storm project. Energy Procedia. 2017;116:170–9. https://doi.org/10.1016/j.egypro.2017.05.065. This is ongoing project that aimed to find new control meghods and strategies for operation in LTDH networks. The solutions to avoid peak loads should be investigated.

    Article  Google Scholar 

  28. Ahn J, Cho S. Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. Build Environ. 2017;124:57–68. https://doi.org/10.1016/j.buildenv.2017.07.040.

    Article  Google Scholar 

  29. Gao L, Cui X, Ni J, Lei W, Huang T, Bai C, et al. Technologies in Smart District Heating System. Energy Procedia. 2017;142:1829–34. https://doi.org/10.1016/j.egypro.2017.12.571.

  30. Toffanin D. Generation of customer load profiles based on smart-metering time series, building-level data and aggregated measurements. M.S. thesis, Swiss Federal Institute of Technology. Zurich; 2016.

  31. Kipping A, Trømborg E. Modeling aggregate hourly energy consumption in a regional building stock. Energies. 2017;11(1):78.

    Article  Google Scholar 

  32. Weissmann C, Hong T, Graubner C-A. Analysis of heating load diversity in German residential districts and implications for the application in district heating systems. Energy and Buildings. 2017;139:302–13. https://doi.org/10.1016/j.enbuild.2016.12.096.

    Article  Google Scholar 

  33. Østergaard D, Svendsen S. Space heating with ultra-low-temperature district heating –a case study of four single-family houses from the 1980s. Energy Procedia. 2017;116:226–35. https://doi.org/10.1016/j.egypro.2017.05.070.

    Article  Google Scholar 

  34. Olsen PK, Christiansen CH, Hofmeister M, Svendsen S, Thorsen J-E, Gudmundsson O. Guidelines for low-temperature district heating. “EUDP 2010-II: Full-scale demonstration of low-temperature district heating in existing buildings”, project journal No. 64010-0479. Denmark; 2014.

  35. Hesaraki A, Ploskic A, Holmberg S. Integrating low-temperature heating systems into energy efficient buildings. Energy Procedia. 2015;78:3043–8. https://doi.org/10.1016/j.egypro.2015.11.720.

    Article  Google Scholar 

  36. A.D. Rosa HL, S. Svendsen, S. Werner, U. Persson, K. Ruehling, C. Felsmann, M. Crane, R. Burzynski, C. Bevilacqua, . Annex X Final report | Toward 4th Generation District Heating: Experience and Potential of Low-Temperature District Heating. IEA DHC|CHP; 2014.

  37. Østergaard DS, Svendsen S. Replacing critical radiators to increase the potential to use low-temperature district heating – a case study of 4 Danish single-family houses from the 1930s. Energy. 2016;110:75–84. https://doi.org/10.1016/j.energy.2016.03.140.

    Article  Google Scholar 

  38. Østergaard DS, Svendsen S. Case study of low-temperature heating in an existing single-family house—a test of methods for simulation of heating system temperatures. Energ Buildings. 2016;126:535–44. https://doi.org/10.1016/j.enbuild.2016.05.042.

    Article  Google Scholar 

  39. Østergaard DS, Svendsen S. Theoretical overview of heating power and necessary heating supply temperatures in typical Danish single-family houses from the 1900s. Energ Buildings. 2016;126:375–83. https://doi.org/10.1016/j.enbuild.2016.05.034.

    Article  Google Scholar 

  40. Brand M, Svendsen S. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment. Energy 2013;62(0):311–319. https://doi.org/10.1016/j.energy.2013.09.027.

  41. Imran M, Usman M, Im YH, Park BS. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia. 2017;116:4–12. https://doi.org/10.1016/j.egypro.2017.05.050.

    Article  Google Scholar 

  42. • Köfinger M, Basciotti D, Schmidt R-R. Reduction of return temperatures in urban district heating systems by the implementation of energy-cascades. Energy Procedia. 2017;116:438–51. https://doi.org/10.1016/j.egypro.2017.05.091. This paper describes consept of temperature cascading as a approach to reduciton of temperature levels in existing high temperature DH networks.

    Article  Google Scholar 

  43. Lauenburg P. 11 - Temperature optimization in district heating systems A2 - Wiltshire, Robin. In: Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 223–40.

    Chapter  Google Scholar 

  44. Li H, Wang SJ. Challenges in smart Low-Temperature District heating development. Energy Procedia. 2014;61:1472–5. https://doi.org/10.1016/j.egypro.2014.12.150.

    Article  Google Scholar 

  45. DECC. Heat Pumps in District Heating. Final report. URN 15D/537. UK; 2016.

  46. Persson U, Werner S. District heating in sequential energy supply. Appl Energy. 2012;95:123–31. https://doi.org/10.1016/j.apenergy.2012.02.021.

    Article  Google Scholar 

  47. Brand L, Calvén A, Englund J, Landersjö H, Lauenburg P. Smart district heating networks – a simulation study of prosumers’ impact on technical parameters in distribution networks. Appl Energy. 2014;129(0):39–48. https://doi.org/10.1016/j.apenergy.2014.04.079.

    Article  Google Scholar 

  48. Brand L, Calvén A, Englund J, Landersjö H, Lauenburg P. Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks. Appl Energy. 2014;129(Supplement C):39–48. https://doi.org/10.1016/j.apenergy.2014.04.079.

    Article  Google Scholar 

  49. Brange L, Englund J, Lauenburg P. Prosumers in district heating networks – A Swedish case study. Appl Energy. 2016;164(Supplement C):492–500. https://doi.org/10.1016/j.apenergy.2015.12.020.

    Article  Google Scholar 

  50. Pietra BD, Zanghirella F, Puglisi G. An Evaluation of Distributed Solar Thermal “Net Metering” in Small-scale District Heating Systems. Energy Procedia. 2015;78(Supplement C):1859–64. https://doi.org/10.1016/j.egypro.2015.11.335.

    Article  Google Scholar 

  51. Wahlroos M, Pärssinen M, Manner J, Syri S. Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks. Energy. 2017;140:1228–38. https://doi.org/10.1016/j.energy.2017.08.078.

    Article  Google Scholar 

  52. Averfalk H, Werner S. Essential improvements in future district heating systems. Energy Procedia. 2017;116:217–25. https://doi.org/10.1016/j.egypro.2017.05.069.

    Article  Google Scholar 

  53. Yang X, Li H, Svendsen S. Decentralized substations for low-temperature district heating with no legionella risk, and low return temperatures. Energy. 2016;110:65–74. https://doi.org/10.1016/j.energy.2015.12.073.

    Article  Google Scholar 

  54. •• Li H, Svendsen S, Gudmundsson O, Kuosa M, Rämä M, Sipilä K, et al. Future low temperature district heating design guidebook. Final report of IEA DHC annex TS1. Low temperature district heating for future energy systems. Frankfurt am Main, Germany; 2017. International reseach program whith three year duraiton that has resently finished. The final report provides informaiton aboud latest activities and research directions towards 4th generaiton of DH.

  55. Yang X, Li H, Svendsen S. Alternative solutions for inhibiting legionella in domestic hot water systems based on low-temperature district heating. Build Serv Eng Res Technol. 2016;37(4):468–78. https://doi.org/10.1177/0143624415613945.

    Article  Google Scholar 

  56. Yang X, Li H, Svendsen S. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy. 2016;109:248–59. https://doi.org/10.1016/j.energy.2016.04.109.

    Article  Google Scholar 

  57. European Committee for Standardization. Recommendations for prevention of legionella growth in installations inside buildings conveying water for human consumption. CEN/TR 16355; 2012.

  58. Basciotti D SR, Kofinger M, Doczekal C. Simulation-based analysis and evaluation of domestic hot water preparation principles for lowtemperature district heating networks. The 14th international symposium on district heating and cooling; Stockholm, Sweden; 2014. p. 182–8.

  59. Gadd H, Werner S. Fault detection in district heating substations. Appl Energy. 2015;157:51–9. https://doi.org/10.1016/j.apenergy.2015.07.061.

    Article  Google Scholar 

  60. Nord N, Løve Nielsen EK, Kauko H, Tereshchenko T. Hanne Kauko, Tymofii Tereshchenko. Challenges and potentials for low-temperature district heating implementation in Norway. Energy. 2018;151:889–902.

  61. Gadd H, Werner S. Achieving low return temperatures from district heating substations. Appl Energy. 2014;136:59–67. https://doi.org/10.1016/j.apenergy.2014.09.022.

    Article  Google Scholar 

  62. Ancona MA, Branchini L, De Pascale A, Melino F. Smart District Heating: Distributed Generation Systems’ Effects on the Network. Energy Procedia. 2015;75(Supplement C):1208–13. https://doi.org/10.1016/j.egypro.2015.07.157.

    Article  Google Scholar 

  63. Ancona MA, Branchini L, Di Pietra B, Melino F, Puglisi G, Zanghirella F. Utilities substations in Smart District heating networks. Energy Procedia. 2015;81:597–605. https://doi.org/10.1016/j.egypro.2015.12.044.

    Article  Google Scholar 

  64. Paulus C, Papillon P. Substations for decentralized Solar District heating: design, performance and energy cost. Energy Procedia. 2014;48:1076–85. https://doi.org/10.1016/j.egypro.2014.02.122.

    Article  Google Scholar 

  65. Tol Hİ, Svendsen S. Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: a case study in Roskilde, Denmark. Energy. 2012;38(1):276–90. https://doi.org/10.1016/j.energy.2011.12.002.

    Article  Google Scholar 

  66. Laajalehto T, Kuosa M, Mäkilä T, Lampinen M, Lahdelma R. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network. Appl Therm Eng. 2014;69(1):86–95. https://doi.org/10.1016/j.applthermaleng.2014.04.041.

    Article  Google Scholar 

  67. Kuosa M, Kontu K, Mäkilä T, Lampinen M, Lahdelma R. Static study of traditional and ring networks and the use of mass flow control in district heating applications. Appl Therm Eng. 2013;54(2):450–9. https://doi.org/10.1016/j.applthermaleng.2013.02.018.

    Article  Google Scholar 

  68. Schmidt D, Kallert A, Blesl M, Svendsen S, Li H, Nord N, et al. Low Temperature District Heating for Future Energy Systems. Energy Procedia. 2017;116(Supplement C):26–38. https://doi.org/10.1016/j.egypro.2017.05.052.

    Article  Google Scholar 

  69. Brand M., Heating and Domestic hot water Systems in Buildings Supplied by low-Temperature District heating, PhD thesis department of Civil Engineering; 2014.

  70. Bøhm B, Kristjansson H. Single, twin and triple buried heating pipes: on potential savings in heat losses and costs. Int J Energy Res. 2005;29(14):1301–12.

    Article  Google Scholar 

  71. Li H, Dalla Rosa A, Svendsen S, editors. Design of a low temperature district heating network with supply recirculation. 12th international symposium on district heating and cooling; 2010.

  72. Averfalk H, Werner S. Novel low temperature heat distribution technology. Energy. 2018;145:526–39. https://doi.org/10.1016/j.energy.2017.12.157.

    Article  Google Scholar 

  73. Gustafsson J, 12 - District heating monitoring SF, A2 -Wiltshire c s. District heating monitoring and control systems. In: Robin. Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 241–58.

  74. Wang Y, You S, Zhang H, Zheng X, Wei S, Miao Q, et al. Operation stability analysis of district heating substation from the control perspective. Energ Buildings. 2017;154:373–90. https://doi.org/10.1016/j.enbuild.2017.08.034.

  75. Sandin F, Gustafsson, J., Delsing, J. Fault detection with Hourly District energy data: probabilistic methods and heuristics for automated detection of anomalies. Swedish District heating association, technical report, 120 p. ISBN: 978–91-7381 125–5; 2013.

  76. Xue P, Zhou Z, Fang X, Chen X, Liu L, Liu Y, et al. Fault detection and operation optimization in district heating substations based on data mining techniques. Appl Energy. 2017;205:926–40. https://doi.org/10.1016/j.apenergy.2017.08.035.

  77. Fabrizio E, Ferrara M, Monetti V. Chapter 10 Smart heating Systems for Cost- Effective Retrofitting. In: Cost-effective energy efficient building retrofitting. Cambridge: Woodhead Publishing; 2017. p. 279–304.

    Chapter  Google Scholar 

  78. Ahmad MW, Mourshed M, Mundow D, Sisinni M, Rezgui Y. Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research. Energy and Buildings. 2016;120:85–102. https://doi.org/10.1016/j.enbuild.2016.03.059.

    Article  Google Scholar 

  79. Bünning F, Wetter M, Fuchs M, Müller D. Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization. Appl Energy. 2018;209:502–15. https://doi.org/10.1016/j.apenergy.2017.10.072.

    Article  Google Scholar 

  80. Christiansen CH WJ, Jørgensen H, Thorsen JE, Bennetsen J, Larsen CT, et al., Demonstration of low energy district heating system for low energy building in Ringgårdens Afd. 34 in Lystrup,. Copenhagen, Teknologisk institute, Maj. 2011.

  81. Christiansen CH PO, Bøhm B, Thorsen JE, Ting Larsen C, Jepsen BK et al. Development and demonstration of low-energy district heating for lowenergy buildings. Main report and appendices. Teknologisk Institut, March; 2009.

  82. SSE zero carbon home development. <http://www.zerocarbonhub.org/greenwatt-way-sse /> [accessed 09.03.18].

  83. Wiltshire R. Low temperature district energy systems. Urban energy conference; October 13–14; Debrecen, Hungary; 2011. p. p. 91–9.

  84. Schmidt D, Kallert A, Orozaliev J, Best I, Vajen K, Reul O, et al. Development of an 602 Innovative Low Temperature Heat Supply Concept for a New Housing Area. Energy 603 Procedia. 2017;116:39–47. https://doi.org/10.1016/j.egypro.2017.05.053.

    Article  Google Scholar 

  85. Rämä M, Heikkinen J, Klobut K, Laitinen A, editors. Network simulation of low heat 605 demand residential area. Submitted to the 14th international symposium on district 606 heating and cooling. 2014.

  86. Klobut K, Knuuti, A., Vares, S., Heikkinen, J., Rämä, M., Laitinen, A., Ahvenniemi, H., Hoang, H., Shemeikka, J. and Sipilä, K. Future district heating solutions for residential districts. VTT Technology (written in Finnish). http://issuu.com/vttfinland/docs/t187/02014.

  87. Kauko H, Kvalsvik KH, Rohde D, Hafner A, Nord N. Dynamic modelling of local 612 low-temperature heating grids: A case study for Norway. Energy. 2017;139:289–97. 613. https://doi.org/10.1016/j.energy.2017.07.086.

    Article  Google Scholar 

  88. Kauko H, Kvalsvik KH, Rohde D, Nord N, Utne Å. Dynamic 615 modelling of local district heating grids with prosumers: A case study for Norway. Energy. 616 https://doi.org/10.1016/jenergy201803.033.

  89. Vetterli N, Sulzer M, Menti U-P. Energy monitoring of a low temperature heating and cooling district network. Energy Procedia. 2017;122:62–7. https://doi.org/10.1016/j.egypro.2017.07.289.

    Article  Google Scholar 

  90. Sun Q, Li H, Wallin F, Zhang Q. Marginal costs for district heating. Energy Procedia. 2016;104:323–8. https://doi.org/10.1016/j.egypro.2016.12.055.

    Article  Google Scholar 

  91. Sipila K, Ikaheimo J, Forsstrom J, Shemeikka J, Klobut K, Nystedt A, & Jahn J (2005). Technical features for heat trade in distributed energy generation. VTT TIEDOTTEITA, 2305

  92. Grönkvist S, Sandberg P. Driving forces and obstacles with regard to co-operation 626 between municipal energy companies and process industries in Sweden. Energy 627. Policy. 2006;34(13):1508–19. https://doi.org/10.1016/j.enpol.2004.11.001.

    Google Scholar 

  93. Stabell C, Fjeldstad Ø. Configuring value for competitive advantage: on chains, shops,, and networks. Strat Manage J. 1998;19:413–37.

    Article  Google Scholar 

  94. Westin P, Lagergren F. Re-regulating district heating in Sweden. Energy Policy. 2002;30(7):583–96. https://doi.org/10.1016/S0301-4215(01)00126-4.

    Article  Google Scholar 

  95. Zhang J, Ge B, Xu H. An equivalent marginal cost-pricing model for the district heating market. Energy Policy. 2013;63:1224–32. https://doi.org/10.1016/j.enpol.2013.09.017.

    Article  Google Scholar 

  96. Li H, Sun Q, Zhang Q, Wallin F. A review of the pricing mechanisms for district heating systems. Renew Sust Energ Rev. 2015;42:56–65. https://doi.org/10.1016/j.rser.2014.10.003.

    Article  Google Scholar 

  97. Dalenback J-O. SDH Solar District heating in Europe - guideline for end-user feed-in of solar heat. In: Solar District Heating Stuttgart, Germany. Stuttgart; 2015.

Download references

Funding

The authors gratefully acknowledge the support from the Research Council of Norway through the research project understanding behavior of district heating systems integrating distributed sources under FRIPRO/FRINATEK program and the Research Center on Zero Emission Neighborhoods in Smart Cities (FME ZEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tymofii Tereshchenko.

Ethics declarations

Conflict of Interest

Tymofii Tereshchenko declares no potential conflicts of interest.

Natasa Nord is a section editor for Current Sustainable/Renewable Energy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Building Sustainability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, T., Nord, N. Future Trends in District Heating Development. Curr Sustainable Renewable Energy Rep 5, 172–180 (2018). https://doi.org/10.1007/s40518-018-0111-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40518-018-0111-y

Keywords

Navigation