Recent Advancements in Torrefaction of Solid Biomass

  • Elias A. Christoforou
  • Paris A. Fokaides
Biomass and Biofuels (P Fokaides, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Biomass and Biofuels


Purpose of Review

The study focuses on the recent advancements on the torrefaction of solid biomass feedstock. A literature review has been conducted and the most important findings of selected studies which have been published the last 5 years are presented.

Recent Findings

According to the published research, solid biomass torrefaction gains significant interest with more than 500 studies since 2002. Based on the existing literature, a focus on the torrefaction woody biomass is observed. However, investigation of torrefaction of herbaceous and other types of biomass such as aquatic is increasing. The integration of pelletization with torrefaction is also widely investigated. Finally, significant effort is given for the development, scaling up, and introduction to market of various torrefaction technologies.


Future research should address the improvement and commercialization of existing torrefaction technologies. Integrated torrefaction and pelletization shall be further investigated especially using non-woody biomass feedstock.


Solid biomass Torrefaction Biofuels 


Compliance with Ethical Standards

Conflict of Interest

Elias A. Christoforou declares no conflicts of interest.

Paris A. Fokaides is a section editor for Current Sustainable/Renewable Energy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Batitzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC. Biomass torrefaction technology: techno-economic status and future prospects. Energy. 2013;62:196–214. Scholar
  2. 2.
    Christoforou EA, Fokaides PA. Life cycle assessment (LCA) of olive husk torrefaction. Renew Energy. 2016;90:257–66. Scholar
  3. 3.
    Klemm M, Schmersahl R, Kirsten C, Biofuels WN. Upgraded new solids. In: Kaltschmitt M, Themelis NJ, Bronicki LY, Söder L, Vega LA, editors. Renewable energy systems. New York: Springer reference; 2013. p. 138–59.CrossRefGoogle Scholar
  4. 4.
    Rousset P, Fernandes K, Vale A, Macedo L, Benoist A. Change in particle size distribution of torrefied biomass during cold fluidization. Energy. 2013;51:71–7. Scholar
  5. 5.
    Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006;31:3458–70. Scholar
  6. 6.
    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Marechal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67. Scholar
  7. 7.
    Bergman PCA. Combined torrefaction and pelletisation—the TOP process. Report ECN-C-05-073, ECN: The Netherlands; 2005. Accessed 10 Mar 2018.
  8. 8.
    Thrän D, Witt J, Schaubach K, Kiel J, Carbo M, Maier J, et al. Moving torrefaction towards market introduction—technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy. 2016;89:184–200. Scholar
  9. 9.
    Correia R, Gonçalves M, Nobre C, Mendes B. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour Technol. 2017;223:210–8. Scholar
  10. 10.
    Joshi Y, de Vries H, Woudstra T, de Jong W. Torrefaction: unit operation modelling and process simulation. Appl Therm Eng. 2015;74:83–8. Scholar
  11. 11.
    Doassans-Carrère N, Muller S, Mitzkat M. REVE—a new industrial technology for biomass torrefaction: pilot studies. Fuel Process Technology. 2014;126:155–62. Scholar
  12. 12.
    Stelte W, Nielsen NPK, Hansen HO, Dahl J, Leib S, Sanadi AR. Reprint of: pelletizing properties of torrefied wheat straw. Biomass Bioenergy. 2013;53:105–12. Scholar
  13. 13.
    Pimchuai A, Dutta A, Basu P. Torrefaction of agricultural residue to enhance combustible properties. Energy Fuel J. 2010;24(9):4638–45. Scholar
  14. 14.
    Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuels. 2008;87:844–56. Scholar
  15. 15.
    Sadaka S, Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy. 2009;28(3):427–34. Scholar
  16. 16.
    Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62. Scholar
  17. 17.
    Chew JJ, Doshi V. Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15:4212–22. Scholar
  18. 18.
    • Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew SustainEnergy Rev. 2015;44:847–66. The study focuses on the pelletisation of torrefied biomass and reviews available technical solutions. CrossRefGoogle Scholar
  19. 19.
    Keipi T, Tolvanen H, Kokko L, Raiko R. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy. 2014;66:232–9. Scholar
  20. 20.
    Wróbel M, Hamerska J, Jewiarz M, Mudryk K, Marzena Niemczyk M. Influence of parameters of the torrefaction process on the selected parameters of torrefied woody biomass. In: Mudryk K, Werle S, editors. Renewable energy sources: engineering, technology, innovation. Springer: Springer Proceedings in Energy; 2018. Scholar
  21. 21.
    • Rodrigues A, Loureiro L, Nunes LJR. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: properties of torrefied products. Biomass Bioenergy. 2018;107:55–65. A comprehensive study for woody biomass torrefaction where 17 different types of woody biomass were processed. CrossRefGoogle Scholar
  22. 22.
    Li S-X, Zou J-Y, Li M-F, Wu X-F, Bian J, Xue Z-M. Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction. Energy. 2017;124:321–9. Scholar
  23. 23.
    Juan F, Pérez JF, Pelaez-Samaniego MR, Garcia-Perez M. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorisation. 2017;
  24. 24.
    Ohliger A, Förster M, Kneer R. Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel. 2013;104:607–13. Scholar
  25. 25.
    Yan W, Perez S, Sheng K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel. 2017;196:473–80. Scholar
  26. 26.
    Gogoi D, Bordoloi N, Goswami R, Narzari R, Saikia R, Sut D, et al. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol. 2017;242:36–44. Scholar
  27. 27.
    Li M-F, Li X, Bian J, Chen C-Z, Yu Y-T, Sun R-C. Effect of temperature and holding time on bamboo torrefaction. Biomass Bioenergy. 2015;83:366–72. Scholar
  28. 28.
    Yue Y, Singh H, Singh B, Mani S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol. 2017;232:372–9. Scholar
  29. 29.
    Kihedu J. Torrefaction and combustion of ligno-cellulosic biomass. Energy Procedia. 2015;75:162–7. Scholar
  30. 30.
    Toscano G, Pizzi A, Pedretti E, Rossini G, Ciceri G, et al. Torrefaction of tomato industry residues. Fuels. 2015;143:89–97. Scholar
  31. 31.
    Benavente V, Fullana A. Torrefaction of olive mill waste. Biomass Bioenergy. 2015;73:186–94. Scholar
  32. 32.
    • Li S-X, Chen C-Z, Li M-F, Xiao X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technol. 2018;249:348–53. Carbon dioxide is used as the medium during torrefaction process. CrossRefGoogle Scholar
  33. 33.
    Sellappah V, Uemura Y, Hassan S, Sulaiman MH, Lam MK. Torrefaction of empty fruit bunch in the presence of combustion gas. Procedia Eng. 2016;148:750–7. Scholar
  34. 34.
    Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel. 2013;103:156–60. Scholar
  35. 35.
    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis. 2012;96:86–91. Scholar
  36. 36.
    Chen W-H, Lu K-M, Lee W-J, Liu S-H, Lin T-C. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy. 2014;114:104–13. Scholar
  37. 37.
    Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol. 2012;123:98–105. Scholar
  38. 38.
    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–25. Scholar
  39. 39.
    Nunes LJR, Matias JCO, Catalão JPS. Mixed biomass pellets for thermal energy production: a review of combustion models. Appl Energy. 2014;127:135–40. Scholar
  40. 40.
    Cao L, Yuan X, Li H, Li C, Xiao Z, Jiang L, et al. Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets. Bioresour Technol. 2015;185:254–62. Scholar
  41. 41.
    Araújo S, Boas MAV, Neiva DM, Carneiro AC, Vital B, Breguez M, et al. Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass Bioenergy. 2016;90:181–6. Scholar
  42. 42.
    Pirraglia A, Gonzalez R, Saloni D, Denig J. Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US. Energy Convers Manag. 2013;66:153–64. Scholar
  43. 43.
    Mobini M, Meyer J, Trippe F, Sowlati T, Fröhling M, Schultmann F. Assessing the integration of torrefaction into wood pellet production. J Clean Prod. 2014;78:216–25. Scholar
  44. 44.
    Li Y, Tittmann P, Parker N, Jenkins B. Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy. 2017;9:681–93. Scholar
  45. 45.
    Xu F, Linnebur K, Wang D. Torrefaction of conservation reserve program biomass: a techno-economic evaluation. Ind Crop Prod. 2014;61:382–7. Scholar
  46. 46.
    Bazargan A, Rough SL, McKay G. Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy. 2014;70:489–97. Scholar
  47. 47.
    Peng J, Bi XT, Lim CJ, Peng H, Kim CS, Jia D, et al. Sawdust as an effective binder for making torrefied pellets. Appl Energy. 2015;157:491–8. Scholar
  48. 48.
    Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H. Effects of binders on the properties of bio-char pellets. Appl Energy. 2015;157:508–16. Scholar
  49. 49.
    Bai X, Wang G, Gong C, Yu Y, Liu W, Wang D. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol. 2017;233:373–81. Scholar
  50. 50.
    •• Cremers M, Koppejan J, Middelkamp J, Witkamp J, Sokhansanj S, Melin S, et al. Status overview of torrefaction technologies—a review of the commercialisation status of biomass torrefaction. IEA Bioenergy; 2015. Accessed 13 Mar 2018. A comprehensive study which provides significant information regarding the current status of torrefaction technologies.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Engineering and Applied SciencesFrederick UniversityNicosiaCyprus

Personalised recommendations