Advertisement

An Overview of Current Models and Approaches to Biomass Supply Chain Design and Management

Biomass and Biofuels (P Fokaides, Section Editor)
  • 27 Downloads
Part of the following topical collections:
  1. Topical Collection on Biomass and Biofuels

Abstract

Purpose of Review

The paper focuses on the progress related to models and approaches for an optimal design and management of biomass supply chains. A literature review has been conducted, and previous review papers have been used as bases. Do most of the current models adopt the same decision level, mathematical methodology and type of objective of those identified by previous reviews? Are there any innovative approaches to revitalise the considered research topic?

Recent Findings

Most of the works published in 2017 and in early 2018 reflect the past literature reviews; regrettably, few relevant advances have been achieved in the recent period to face up the major gaps. Innovative works apply Life Cycle Assessment, Multi-Criteria Analysis, CyberGIS or Agent-Based approaches to biomass supply chain optimisation.

Summary

Future research should address, for instance, sustainability of biomass supply chains through a more comprehensive approach including economic, environmental, social and policy-related issues, integration of the decision levels to meet the needs of different stakeholders.

Keywords

Biomass Supply chain Design Management Optimisation Simulation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Emanuela Melis, Andrea Vincis and Pier F. Orrù each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Vasković S, Gvero P, Medaković V, Halilović V: Energy chains optimization for selection of sustainable energy supply. In: Krmac E, edited by. Sustainable Supply Chain Management. InTech; 2016. The application of a MCDM (Multi-Criteria Decision-Making) approach coupled with a mathematical model to calculate optimisation criteria based on three types of objective: environmental, energetic and economic. Google Scholar
  2. 2.
    Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Computers Chem Eng. 2014;66:36–56.  https://doi.org/10.1016/j.compchemeng.2013.11.016.CrossRefGoogle Scholar
  3. 3.
    Dessbesell L, Xu C, Pulkki R, Leitch M, Mahmood N. Forest biomass supply chain optimization for a biorefinery aiming to produce high-value bio-based materials and chemicals from lignin and forestry residues: a review of literature. Can J For Res. 2017;47:277–88.  https://doi.org/10.1139/cjfr-2016-0336.CrossRefGoogle Scholar
  4. 4.
    • Hong BH, How BS, Lam HL. Overview of sustainable biomass supply chain: from concept to modelling. Clean Techn Environ Policy. 2016;18:2173–94.  https://doi.org/10.1007/s10098-016-1155-6. An overview of problems and decisions along a biomass supply chain, to define a sustainable integrated biomass supply chain. A SWAT analysis is suggested CrossRefGoogle Scholar
  5. 5.
    De Meyer A, Cattrysse D, Rasinmäki J, Van Orshoven J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: a review. Renew Sust Energy Rev. 2014;31:657–70.  https://doi.org/10.1016/j.rser.2013.12.036.CrossRefGoogle Scholar
  6. 6.
    Bochtis DD, Dogoulis P, Busato P, Sørensen CG, Berruto R, Gemtos T. A flow-shop problem formulation of biomass handling operations scheduling. Comp Electr Agr. 2013;91:49–56.  https://doi.org/10.1016/j.compag.2012.11.015.CrossRefGoogle Scholar
  7. 7.
    Caffrey K, Chinn M, Veal M, Kay M. Biomass supply chain management in North Carolina (part 2): biomass feedstock logistical optimization. AIMS En. 2016;4(2):280–99.  https://doi.org/10.3934/energy.2016.2.280.CrossRefGoogle Scholar
  8. 8.
    Gracia C, Velázquez-Martí B, Estornell J. An application of the vehicle routing problem to biomass transportation. Biosyst Eng. 2014;124:40–52.  https://doi.org/10.1016/j.biosystemseng.2014.06.009.CrossRefGoogle Scholar
  9. 9.
    Hoefnagels R, Searcy E, Kafferty K, Cornelissen T, Junginger M, Jacobson J, et al. Lignocellulosic feedstock supply systems with intermodal and overseas transportation. Biofuels Bioprod Biorefin. 2014;8:794–18.  https://doi.org/10.1002/bbb.1497.CrossRefGoogle Scholar
  10. 10.
    Pavlou D, Orfanou A, Busato P, Berruto R, Sørensen C, Bochtis D. Functional modeling for green biomass supply chains. Comp Electr Agr. 2016;122:29–40.  https://doi.org/10.1016/j.compag.2016.01.014.CrossRefGoogle Scholar
  11. 11.
    Torjai L, Kruzslicz F. Mixed integer programming formulations for the biomass truck scheduling problem. Centr Eur J Op Res. 2016;24:731–45.  https://doi.org/10.1007/s10100-015-0395-6.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Montgomery TD, Han HS, Kizha AR. Modeling work plan logistics for centralized biomass recovery operations in mountainous terrain. Biomass Bioenergy. 2016;85:262–70.  https://doi.org/10.1016/j.biombioe.2015.11.023.CrossRefGoogle Scholar
  13. 13.
    Igathinathane C, Tumuluru JS, Keshwani D, Schmer M, Archer D, Liebig M, et al. Biomass bale stack and field outlet locations assessment for efficient infield logistics. Biomass Bioenergy. 2016;91:217–26.  https://doi.org/10.1016/j.biombioe.2016.05.019.CrossRefGoogle Scholar
  14. 14.
    Malladi KT, Sowlati T. Optimization of operational level transportation planning in forestry: a review. Int J For Eng. 2017;28(3):198–210.  https://doi.org/10.1080/14942119.2017.1362825.Google Scholar
  15. 15.
    Mobini M, Sowlati T, Sokhansanj S. A simulation model for the design and analysis of wood pellet supply chains. Appl En. 2013;111:1239–49.  https://doi.org/10.1016/j.apenergy.2013.06.026.CrossRefGoogle Scholar
  16. 16.
    Windisch J, Röser D, Mola-Judego B, Sikanen S, Asikainen A. Business process mapping and discrete-event simulation of two forest biomass supply chains. Biomass Bioenergy. 2013;56:370–81.  https://doi.org/10.1016/j.biombioe.2013.05.022.CrossRefGoogle Scholar
  17. 17.
    Sahoo K, Mani S. GIS based discrete event modeling and simulation of biomass supply chain. Proceedings of the 2015 Winter Simulation Conference-IEEE 2015:967–978. Doi: https://doi.org/10.1109/WSC.2015.7408225.
  18. 18.
    • Holmgren J, Ramstedt L. An extended TAPAS-Z model and a case study of the transport of forest products. Procedia Comp Sci. 2017;109C:343–50.  https://doi.org/10.1016/j.procs.2017.05.362. Provision of an extension of an already developed Agent-Based freight transport analysis model (TAPAS-Z), for decision-making in woody biomass transport chains CrossRefGoogle Scholar
  19. 19.
    Rauch P, Gronalt M. The terminal location problem in the forest fuels supply network. Int J Forest Eng. 2013;21(2):32–40.  https://doi.org/10.1080/14942119.2010.10702596.Google Scholar
  20. 20.
    Rudi A, Müller A-K, Fröhling M, Schultmann F. Biomass value chain design: a case study of the Upper Rhine Region. Waste Biomass Valor. 2017;8(7):2313–27.  https://doi.org/10.1007/s12649-016-9820-x.CrossRefGoogle Scholar
  21. 21.
    Grigoroudis E, Petridis K, Arabatsis G. RDEA: a recursive DEA based algorithm for the optimal design of biomass supply chain networks. Ren En. 2014;71:113–22.  https://doi.org/10.1016/j.renene.2014.05.001.CrossRefGoogle Scholar
  22. 22.
    Roni MS, Eksioglu SD, Searcy E, Jha K. A supply chain network design model for biomass co-firing in coal-fired power plants. Transp Res Part E. 2014;61:115–34.  https://doi.org/10.1016/j.tre.2013.10.007.CrossRefGoogle Scholar
  23. 23.
    Taskhiri MS, Garbs M, Geldermann J. Sustainable logistics network for wood flow considering cascade utilisation. J Cle Pro. 2016;110:25–39.  https://doi.org/10.1016/j.jclepro.2015.09.098.CrossRefGoogle Scholar
  24. 24.
    Lin T, Rodríguez LF, Davis S, Khanna M, Shastri Y, Grift T, et al. Biomass feedstock preprocessing and long-distance transportation logistics. GCB Bioe. 2016;8:160–70.  https://doi.org/10.1111/gcbb.12241.CrossRefGoogle Scholar
  25. 25.
    Paolucci N, Bezzo F, Tugnoli A. A two-tier approach to the optimization of a biomass supply chain for pyrolysis processes. Biomass Bioenergy. 2016;84:87–97.  https://doi.org/10.1016/j.biombioe.2015.11.011.CrossRefGoogle Scholar
  26. 26.
    Palander T. Applying dynamic multiple-objective optimization in inter-enterprise collaboration to improve the efficiency of energy wood transportation and storage. Scandin J For Research. 2015;30(4):346–56.  https://doi.org/10.1080/02827581.2014.1001780.Google Scholar
  27. 27.
    Paulo H, Azcue X, Barbosa-Póvoa AP, Relvas S. Supply chain optimization of residual forestry biomass for bioenergy production: the case study of Portugal. Biomass Bioenergy. 2015;83:245–56.  https://doi.org/10.1016/j.biombioe.2015.09.020.CrossRefGoogle Scholar
  28. 28.
    d’Amore F, Bezzo F. Strategic optimisation of biomass-based energy supply chains for sustainable mobility. Comp Chem Eng. 2016;87:68–81.  https://doi.org/10.1016/j.compchemeng.2016.01.003.CrossRefGoogle Scholar
  29. 29.
    • Lim CH, Lam HL. Biomass supply chain optimisation via novel Biomass Element Life Cycle Analysis (BELCA). Appl En. 2016;161:733–45.  https://doi.org/10.1016/j.apenergy.2015.07.030. A multi-objective model including economic and environmental objectives for an efficient use of potential underutilised biomass CrossRefGoogle Scholar
  30. 30.
    Hu H, Lin T, Wang S, Rodriguez LF. A CyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization. Appl En. 2017;203:26–40.  https://doi.org/10.1016/j.apenergy.2017.03.107.CrossRefGoogle Scholar
  31. 31.
    • Lin T, Wang S, Rodríguez LF, Hu H, Liu Y. CyberGIS-enabled decision support platform for biomass supply chain optimization. Env Model Soft. 2015;70:138–48.  https://doi.org/10.1016/j.envsoft.2015.03.018. A CyberGIS approach using a MILP model to support strategic decisions. It guarantees a high computational performance of complex problems. CrossRefGoogle Scholar
  32. 32.
    Zamar DS, Gopaluni B, Sokhansanj S, Newlands NK. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty. Comp Chem Eng. 2017;97:114–23.  https://doi.org/10.1016/j.compchemeng.2016.11.015.CrossRefGoogle Scholar
  33. 33.
    Rentizelas AA, Tolis AI, Tatsiopoulos IP. Optimisation and investment analysis of two biomass-to-heat supply chain structures. Biosyst Eng. 2014;120:81–91.  https://doi.org/10.1016/j.biosystemseng.2013.07.012.CrossRefGoogle Scholar
  34. 34.
    Rentizelas AA, Tatsiopoulos IP. Locating a bioenergy facility using a hybrid optimization method. Int J Prod Econ. 2010;123(1):196–209.  https://doi.org/10.1016/j.ijpe.2009.08.013.CrossRefGoogle Scholar
  35. 35.
    Golecha R, Gan J. Biomass transport cost from field to conversion facility when biomass yield density and road network vary with transport radius. App En. 2016;164:321–31.  https://doi.org/10.1016/j.apenergy.2015.11.070.CrossRefGoogle Scholar
  36. 36.
    •• Kylili A, Christoforou E, Fokaides PA. Environmental evaluation of biomass pelleting using Life Cycle Assessment. Biom Bioe. 2016;84:107–17.  https://doi.org/10.1016/j.biombioe.2015.11.018. The Life Cycle Assessment methodology has been used to support the optimisation of a pellet supply chain; a new mathematical parametric model and non-linear programming have been developed for the transportation CrossRefGoogle Scholar
  37. 37.
    ISO 14040:2006. Environmental management—Life Cycle Assessment—principles and framework.Google Scholar
  38. 38.
    ISO 14044:2006. Environmental management—Life Cycle Assessment—requirements and guidelines.Google Scholar
  39. 39.
    Correll D, Suzuki Y, Martens BJ. Logistical supply chain design for bioeconomy applications. Biomass Bioenergy. 2014;66:60–9.  https://doi.org/10.1016/j.biombioe.2014.03.036.CrossRefGoogle Scholar
  40. 40.
    Martinkus N, Shi W, Lovrich N, Pierce J, Smith P, Wolcott M. Integrating biogeophysical and social assets into biomass-to-biofuel supply chain siting decisions. Biomass Bioenergy. 2014;66:410–8.  https://doi.org/10.1016/j.biombioe.2014.04.014.CrossRefGoogle Scholar
  41. 41.
    Delivand MK, Cammerino ARB, Garofalo P, Monteleone M. Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and GHG (greenhouse gas) emissions: a case study on electricity productions in South Italy. J Cle Pro. 2015;99:129–39.  https://doi.org/10.1016/j.jclepro.2015.03.018.CrossRefGoogle Scholar
  42. 42.
    • Ribeiro Teixeira T, Alvares Soares Ribeiro CA, Rosa dos Santos A, Marcatti GE, Lorenzon AS, de Castro NLM, et al. Forest biomass power plant installation scenarios. Biom Bioe. 2018;108:35–47.  https://doi.org/10.1016/j.biombioe.2017.10.006. Fuzzy logic and GIS have been used to manage economic, environmental and social complexities of biomass supply chains, by minimising transport distances and costs CrossRefGoogle Scholar
  43. 43.
    Ackerman PA, van der Merwe EA, Pulkki RE. A South African softwood saw timber supply chain case study. South For J For Sc. 2017;79(4):329–38.  https://doi.org/10.2989/20702620.2016.1255380.Google Scholar
  44. 44.
    Guilhermino A, Lourinho G, Brito P, Almeida N. Assessment of the use of forest biomass residues for bioenergy in Alto Alentejo, Portugal: logistics, economic and financial perspectives. Waste Biomass Valor. 2017;9:1–15.  https://doi.org/10.1007/s12649-017-9830-3. Google Scholar
  45. 45.
    • Martinkus N, Latta G, Morgan T, Wolcott MA. comparison of methodologies for estimating delivered forest residue volume and cost to a wood-based biorefinery. Biom Bioe. 2017;106:83–94.  https://doi.org/10.1016/j.biombioe.2017.08.023. Comparison between two spatial methods (a past-predictive model and a future-predictive bio-economic model in a GIS environment) of estimation of biomass volume and costs of delivered forest residues to a biorefinery CrossRefGoogle Scholar
  46. 46.
    Chung W, Anderson N. Spatial modeling of potential woody biomass flow, in: 35th annual meeting of the council on forest engineering: engineering new solutions for energy supply and demand 2012.Google Scholar
  47. 47.
    Noon CE, Daly MJ. GIS-based biomass resource assessment with BRAVO. Biomass Bioenergy. 1996;10(2–3):101–9.  https://doi.org/10.1016/0961-9534(95)00065-8.CrossRefGoogle Scholar
  48. 48.
    Shabani N, Sowlati T, Ouhimmou M, Rönnqvist M. Tactical supply chain planning for a forest biomass power plant under supply uncertainty. Ener. 2014;78:346–55.  https://doi.org/10.1016/j.energy.2014.10.019.CrossRefGoogle Scholar
  49. 49.
    Sosa A, Acuna M, McDonnell K, Devlin G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. App En. 2015;137:338–51.  https://doi.org/10.1016/j.apenergy.2014.10.018.CrossRefGoogle Scholar
  50. 50.
    Marques A, Rasinmäki J, Soares R, Amorim P. Planning woody biomass supply in hot systems under variable chips energy content. Biomass Bioenergy. 2018;108:265–77.  https://doi.org/10.1016/j.biombioe.2017.11.016.CrossRefGoogle Scholar
  51. 51.
    Shabani N, Sowlati T. A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties. J Cle Pro. 2016;112:3285–93.  https://doi.org/10.1016/j.jclepro.2015.09.034.CrossRefGoogle Scholar
  52. 52.
    Fleischmann B, Meyr H. The general lot sizing and scheduling problem. OR-Spektrum. 1997;19(1):11–21.  https://doi.org/10.1007/BF01539800.CrossRefMATHGoogle Scholar
  53. 53.
    Zhang L, Hu G. Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass Bioenergy. 2013;58:238–50.  https://doi.org/10.1016/j.biombioe.2013.08.016.CrossRefGoogle Scholar
  54. 54.
    Pudel SR, Marufuzzaman M, Bian L. A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty. Transp Res Part E. 2016;94:1–25.  https://doi.org/10.1016/j.tre.2016.07.004.CrossRefGoogle Scholar
  55. 55.
    Ekşioğlu SD, Karimi H, Ekşioğlu B. Optimization models to integrate production and transportation planning for biomass co-firing in coal-fired power plants. IIE Trans. 2016;48(10):901–20.  https://doi.org/10.1080/0740817X.2015.1126004.CrossRefGoogle Scholar
  56. 56.
    Ekşioğlu SD, Karimi H. A model for analyzing the impact of production tax credit on renewable electricity production. IIE Ann Conference and Expo. 2014:2407–16.Google Scholar
  57. 57.
    Xie F, Huang Y, Eksioglu S. Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresour Technol. 2014;152:15–23.  https://doi.org/10.1016/j.biortech.2013.10.074.CrossRefGoogle Scholar
  58. 58.
    How BS, Tan KY, Lam HL. Transportation decision tool for optimisation of integrated biomass flow with vehicle capacity constraints. J Cle Pro. 2016;136:197–223.  https://doi.org/10.1016/j.jclepro.2016.05.142.CrossRefGoogle Scholar
  59. 59.
    Zhang F, Johnson DM, Wang J. Integrating multimodal transport into forest-delivered biofuel supply chain design. Ren En. 2016;93:58–67.  https://doi.org/10.1016/j.renene.2016.02.047.CrossRefGoogle Scholar
  60. 60.
    Balaman ŞY, Matopoulos A, Wright DJ, Scott J. Integrated optimization of sustainable supply chains and transportation networks for multi technology bio-based production: a decision support system based on fuzzy e-constraint method. J Cle Pro. 2017;172:1–24.  https://doi.org/10.1016/j.jclepro.2017.11.150.Google Scholar
  61. 61.
    Lin T, Rodríguez LF, Shastri YN, Hansen AC, Ting KC. Integrated strategic and tactical biomass—biofuel supply chain optimization. Bioresour Technol. 2014;156:256–66.  https://doi.org/10.1016/j.biortech.2013.12.121.CrossRefGoogle Scholar
  62. 62.
    De Meyer A, Cattrysse D, Orshoven JV. Considering biomass growth and regeneration in the optimisation of biomass supply chains. Ren En. 2016;87:990–1002.  https://doi.org/10.1016/j.renene.2015.07.043.CrossRefGoogle Scholar
  63. 63.
    Orfanou A, Busato P, Bochtis DD, Edwards G, Pavlou D, Sørensen CG, et al. Scheduling for machinery fleets in biomass multiple-field operations. Comp Electr Agr. 2013;94:12–9.  https://doi.org/10.1016/j.compag.2013.03.002.CrossRefGoogle Scholar
  64. 64.
    Ghaderi H, Pishvaee MS, Moini A. Biomass supply chain network design: an optimization-oriented review and analysis. Doi: https://doi.org/10.1016/j.indcrop.2016.09.027.
  65. 65.
    Mafakhteri F, Nasiri F. Modeling of biomass-to-energy supply chain operations: applications, challenges and research directions. En Pol. 2014;67:116–26.  https://doi.org/10.1016/j.enpol.2013.11.071.CrossRefGoogle Scholar
  66. 66.
    Atashbar NZ, Labadie N, Prins C. Modeling and optimization of biomass supply chains: a review and a critical look. IFAC-PapersOnLine. 2016;49(12):604–15.  https://doi.org/10.1016/j.ifacol.2016.07.742.CrossRefGoogle Scholar
  67. 67.
    ISO 14046:2014. Environmental management—Water footprint—principles, requirements and guidelines.Google Scholar
  68. 68.
    Lautala PT, Hilliard MR, Webb E, Busch I, Hess JR, Roni MS, et al. Opportunities and challenges in the design and analysis of biomass supply chains. Env Manag. 2015;56:1397–15.  https://doi.org/10.1007/s00267-015-0565-2.CrossRefGoogle Scholar
  69. 69.
    Ba BH, Prins C, Prodhon C. Models for optimization and performance evaluation of biomass supply chains: an operations research perspective. Ren En. 2016;87:977–89.  https://doi.org/10.1016/j.renene.2015.07.045.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Chemical and Materials EngineeringCagliariItaly

Personalised recommendations