Skip to main content
Log in

Femtosecond Laser-Induced Nonlinear Absorption in Thick Polystyrene

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

The nonlinear absorption behavior of thick polystyrene sample was experimentally investigated and theoretically analyzed. As polystyrene is transparent to the applied laser wavelength, the absorption was mainly through nonlinear absorption by the bulk material. The effective second order nonlinear absorption coefficient (β) was determined with the z scan technique. The nonlinear behavior at different laser powers: 5.2 mW, 10.4 mW, 14.4 mW and 23.5 mW were investigated. The transmittance of laser energy was measured and a significant change was observed with different sample distance from the laser focal plane. By treating the thick polystyrene sample as a stack of thin layers, the effective nonlinear absorption coefficient was determined to be 0.000695 m/W with a standard deviation of 0.000026.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sugioka, K., Meunier, M., Piqué, A.: Laser Precision Microfabrication. Springer-Verlag, (2010)

  2. Jiang, C., Tsai, H.L.: Femtosecond Lasers Ablation: Challenges and Opportunities. (2003)

  3. Sheik-bahae, M., Said, A.A., Van Stryland, E.W.: High-sensitivity, single-beam n2 measurements. Opt. Lett. 14(17), 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    Article  Google Scholar 

  4. Heberle, J., Häfner, T., Schmidt, M.: Nonlinear absorption measurements of intraocular lens polymers by integrating Z-scan. Journal of Laser Applications. 28(2), (2016). https://doi.org/10.2351/1.4944116

  5. Noskovicova, E., Lorenc, D., Slusna, L., Velic, D.: Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics. Opt. Mater. 60, 559–563 (2016). https://doi.org/10.1016/j.optmat.2016.09.002

    Article  Google Scholar 

  6. Shimoji, N., Hashimoto, T., Nasu, H., Kamiya, K.: Non-linear optical properties of Li2O-TiO2-P2O5 glasses. J. Non-Cryst. Solids. 324(1–2), 50–57 (2003). https://doi.org/10.1016/S0022-3093(03)00178-9

    Article  Google Scholar 

  7. Rangel-Rojo, R., Kosa, T., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K., Wherrett, B.S.: Near-infrared optical nonlinearities in amorphous chalcogenides. Opt. Commun. 109(1–2), 145–150 (1994). https://doi.org/10.1016/0030-4018(94)90752-8

    Article  Google Scholar 

  8. Ma, H., Gomes, A.S.L., de Araujo, C.B.: Infrared nonlinearity of commercial cd(S, se) glass composites. Opt. Commun. 87(1–2), 19–22 (1992). https://doi.org/10.1016/0030-4018(92)90034-O

    Article  Google Scholar 

  9. Rogers, D.C., Manning, R.J., Ainslie, B.J., Cotter, D., Yates, M.J., Parker, J.M., Morgan, S.: Concentration dependence of nonresonant nonlinearity in CdS xSe1-x doped glasses. IEEE Photon. Technol. Lett. 6(8), 1017–1019 (1994). https://doi.org/10.1109/68.313081

    Article  Google Scholar 

  10. Bertolottie, M., Liakhou, G., Michelotti, F., Senesi, F., Sibilia, C.: A beam distortion (z-scan) technique applied to the measurements of non-linearities in CdSxSe1-x doped glasses. Pure and Applied Optics: Journal of the European Optical Society Part A. 1(3), 145–156 (1992). https://doi.org/10.1088/0963-9659/1/3/004

    Article  Google Scholar 

  11. Smirl, A.L., Boggess, T.F., Dubard, J., Cui, A.G.: Single- and multiple-beam nonlinear absorption and refraction measurements in semiconductors. In: 1990, pp. 251–261

  12. Sheik-Bahae, M., Wang, J., Van Stryland, E.W.: Nondegenerate optical Kerr effect in semiconductors. IEEE J. Quantum Electron. 30(2), 249 (1994). https://doi.org/10.1109/3.283767

    Article  Google Scholar 

  13. Krauss, T.D., Wise, F.W.: Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS. Appl. Phys. Lett. 65(14), 1739–1741 (1994). https://doi.org/10.1063/1.112901

    Article  Google Scholar 

  14. Said, A.A., Sheik-Bahae, M., Hagan, D.J., Wei, T.H., Wang, J., Young, J., Van Stryland, E.W.: Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B. 9(3), 405–414 (1992). https://doi.org/10.1364/JOSAB.9.000405

    Article  Google Scholar 

  15. Ma, C.R., Xiao, J., Yang, G.W.: Giant nonlinear optical responses of carbyne. J. Mater. Chem. C. 4(21), 4692–4698 (2016). https://doi.org/10.1039/C6TC00648E

    Article  Google Scholar 

  16. Li, L., Yuan, H.J., Hu, G., Palffy-Muhoray, P.: Non-symmetric dimeric liquid crystals: the preparation and properties of the α-(4-cyanobiphenyl-4′-yloxy)-ω-(4-n-alkylanilinebenzylidene-4′-oxy)alkanes. Liq. Cryst. 16(4), 703–712 (1994). https://doi.org/10.1080/02678299408036542

    Article  Google Scholar 

  17. Gu, G., Zhang, W., Zen, H., Du, Y., Han, Y., Zhang, W., Dong, F., Xia, Y.: Large non-linear absorption in c6o thin films. J. Phys. B Atomic Mol. Phys. 26(15), 451–455 (1993). https://doi.org/10.1088/0953-4075/26/15/004

    Article  Google Scholar 

  18. Wei, T.H., Hagan, D.J., Sence, M.J., Van Stryland, E.W., Perry, J.W., Coulter, D.R.: Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines. Applied Physics B Photophysics and Laser Chemistry 54(1), 46–51 (1992). https://doi.org/10.1007/BF00331733

  19. Sheik-Bahae, M., Said, A.A., Hagan, D.J., Soileau, M.J., Van Stryland, E.W.: Nonlinear refraction and optical limiting in "thick" media. OPTICE 30(8), 1228–1235 (1991). https://doi.org/10.1117/12.55902

  20. Chapple, P.B., Hermann, J.A., McDuff, R.G.: Power saturation effects in thick single-element optical limiters. Opt. Quant. Electron. 31(5), 555–569 (1999). https://doi.org/10.1023/A:1006935600751

    Article  Google Scholar 

  21. Zang, W.-P., Tian, J.-G., Liu, Z.-B., Zhou, W.-Y., Song, F., Zhang, C.-P.: Analytic solutions to Z-scan characteristics of thick media with nonlinear refraction and nonlinear absorption. J Opt Soc Am B. 21(1), 63–66 (2004). https://doi.org/10.1364/JOSAB.21.000063

    Article  Google Scholar 

  22. Rytlewski, P., Żenkiewicz, M.: Laser-induced surface modification of polystyrene. Appl. Surf. Sci. 256(3), 857–861 (2009). https://doi.org/10.1016/j.apsusc.2009.08.075

    Article  Google Scholar 

  23. Li, H., Fan, Y., Kodzius, R., Foulds, I.: Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst. Technol. 18(3), 373–379 (2012). https://doi.org/10.1007/s00542-011-1410-z

    Article  Google Scholar 

  24. Wang, B., Wang, X., Zheng, H., Lam, Y.C.: Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation. Nanomaterials. 5(3), 1442–1453 (2015). https://doi.org/10.3390/nano5031442

    Article  Google Scholar 

  25. Wang, B., Wang, X.C., Zheng, H.Y., Lam, Y.C.: Femtosecond laser-induced surface wettability modification of polystyrene surface. Sci. China Phys. Mech. Astron. 59(12), (2016). https://doi.org/10.1007/s11433-016-0307-1

  26. Wang, B., Wang, X.C., Zheng, H.Y., Lam, Y.C.: Surface modification of polystyrene by femtosecond laser irradiation. Journal of Laser Micro Nanoengineering. 11(2), 253–256 (2016). https://doi.org/10.2961/jlmn.2016.02.0017

    Article  Google Scholar 

  27. Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Stryland, E.W.V.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  Google Scholar 

  28. Artal, P., Manzanera, S., Komar, K., Gambín-Regadera, A., Wojtkowski, M.: Visual acuity in two-photon infrared vision. Optica. 4(12), 1488–1491 (2017). https://doi.org/10.1364/OPTICA.4.001488

    Article  Google Scholar 

  29. Rumi, M., Perry, J.W.: Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon. 2(4), 451–518 (2010). https://doi.org/10.1364/AOP.2.000451

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Singapore Institute of Manufacturing Technology under the Agency for Science, Technology and Research (A*STAR) Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Cheong Lam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, X., Zheng, H. et al. Femtosecond Laser-Induced Nonlinear Absorption in Thick Polystyrene. Lasers Manuf. Mater. Process. 6, 59–66 (2019). https://doi.org/10.1007/s40516-019-0080-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-0080-z

Keywords

Navigation