Skip to main content

Advertisement

Log in

Material Characterisation with New Indentation Technique Based on Laser-Induced Shockwaves

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Conventional material development of new compositions is expensive and time consuming. Thus, for material characterisation there is a demand to enable high through-put experimentation to analyse and develop new materials in a short time. In this context, a new experimentation method is presented, which is based on TEA CO2 laser-induced shockwaves. First, plasma is created with a nanosecond pulsed TEA CO2 laser on top of a spherical indenter. Further interactions of the plasma with the high intensity laser beam result in a shockwave. The pressure of the shockwave is used to force the indenter penetrate inside the test material. Indentations are created on different aluminium alloys and correlated with hardness. The influence of environmental conditions, indenter material and diameter are investigated. Additionally, an energy model is introduced, which describes the possible indentation strain energy in dependence of the indenter diameter and the shockwave energy transferred to the indenter. The experiments reveal that smaller indenter diameters are recommendable for higher impact efficiencies. Best indentation results are achieved in terms of reproducibility and depth with a 3 mm indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H.: Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci. 13(6), 579–633 (2011). https://doi.org/10.1021/co200007w

    Article  Google Scholar 

  2. Brech, F., Cross, L.: Optical microemission stimulated by a ruby MASER. Appl Spectrosc. 16, 59 (1962)

    Google Scholar 

  3. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J Appl Phys. 68(2), 775–784 (1990). https://doi.org/10.1063/1.346783

    Article  Google Scholar 

  4. Veenaas, S., Wielage, H., Vollertsen, F.: Joining by laser shock forming: realization and acting pressures. Prod Eng. 8(3), 283–290 (2013). https://doi.org/10.1007/s11740-013-0521-z

    Article  Google Scholar 

  5. Miziolek, A., Palleschi, V., Schechter, I.: Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge Univ. Press., 1–15 (2006)

  6. Bergmann, H.W., Hügel, H.: Modellierung und Diagnostik des Abtragsprozesses. Strahltechnik Band. 6, 35–44 (1998)

    Google Scholar 

  7. Barchukov, A.I., Bunkin, F.V., Konov, V.I., Lyubin, A.A.: Investigation of low-threshold gas breakdown near solid targets by CO2 laser radiation. Sov Phys. 39, 42–45 (1974)

    Google Scholar 

  8. Marpaung, A.M., Hedwig, R., Pardede, M., Lie, T.J., Tjia, M.O., Kagawa, K., Kurniawan, H.: Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures. Spectrochim Acta, Part B 55(10), 1591–1599 (2000). https://doi.org/10.1016/S0584-8547(00)00264-0

    Article  Google Scholar 

  9. Walter, D., Michalowski, A., Gauch, R., Dausinger, F.: Monitoring of the micro-drilling process by means of laser-induced shock waves. Proc Fourth Intl WLT-Conference Lasers Manuf, 557–562 (2007)

  10. Vollertsen, F., Niehoff, H.S., Wielage, H.: On the acting pressure in laser deep drawing. Prod Eng. 3(1), 1–8 (2009). https://doi.org/10.1007/s11740-008-0135-z

    Article  Google Scholar 

  11. Czotscher, T., Vollertsen, F.: Process stability of laser induced plasma for hardness measurements. In: Proceedings of the 9th International WLT-Conference on Lasers in Manufacturing. Munich, Germany, 1–7 (2017)

  12. Czotscher, T., Veenaas, S., Vollertsen, F.: Possibilities to characterise laser induced shockwaves. Journal for Technology of Plasticity. (2017). https://doi.org/10.24867/jtp.2017.42-1.1-7

  13. Czotscher, T.: Analysis of TEA-CO2-laser-induced plasma to establish a new measurement technique. J Laser Appl. 30(3), 032604 (2018). https://doi.org/10.2351/1.5040600

    Article  Google Scholar 

  14. Radziemski, L.J., Cremers, D.A., Niemczyk, T.M.: Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques. Spectrochim Acta B. 40(3), 517–525 (1985). https://doi.org/10.1016/0584-8547(85)80089-6

    Article  Google Scholar 

  15. Czotscher, T., Vollertsen, F.: Proceedings of the 8th International Conference on High Speed Forming (ICHSF, Columbus, OH) (2018) https://doi.org/10.17877/DE290R-18958

  16. Johnson, K.L.: Contact Mechanics. J Am Chem Soc. 37, 1–17 (1985)

    Google Scholar 

  17. Pawelski, H., Pawelski, O.: Technische Plastomechanik – Kompendium und Übungen. Verlag Stahleisen, Düsseldorf (2000)

  18. Hollomon, J.H.: Tensile deformation. Met Technoloogy, 268–290 (1945)

  19. Grüning, K.: Grundlagen der Umformtechnik. In: Umformtechnik. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 4–16 (1986)

  20. Popov, V.L.: Kontaktmechanik und Reibung. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  21. Trauth, D., Klocke, F., Schongen, F., Shirobokov, A.: Analyse und Modellierung der Schlagkraft beim elektro - dynamischen Festklopfen zur kraftbasierten Prozessauslegung. Verlag Meisenbach GmbH, 1–8 (2013)

  22. Zel’dovich, Ya B., Raizer, Yu P.: Physics of shock waves and high-temperature hydrodynamic phenomena. ACADEMIC PRESS, (1967)

Download references

Acknowledgements

Financial support of the subproject D02 “Laser induced hardness measurements” of the Collaborative Research Centre SFB1232 by the German Research Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Czotscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czotscher, T. Material Characterisation with New Indentation Technique Based on Laser-Induced Shockwaves. Lasers Manuf. Mater. Process. 5, 439–457 (2018). https://doi.org/10.1007/s40516-018-0074-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-018-0074-2

Keywords

Navigation