Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals – State of the Art

  • A. Bharatish
  • S. Soundarapandian


Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.


Femtosecond Laser surface texturing Metals Non-metals 


  1. 1.
    Erdo Lan, M., yktem, B., Kalaycıo Llu, H., Yavaf, S., Mukhopadhyay, P.K., Eken, K.y., Aykac, Y., Tazebay, U.H., Ilday, F.y.: Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express. 19, 10986–10996 (2011)Google Scholar
  2. 2.
    Ancona, A., Roser, F., Rademaker, K., Limpert, J., Nolte, S., Tünnermann, A.: High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt Express. 6(12), 8958–8968 (2008)CrossRefGoogle Scholar
  3. 3.
    Yoshino, F., Shah, L., Fermann, M., Arai, A., Uehara, Y.: Micromachining with a high repetition rate femtosecond fiber laser. J. Laser Micro / Nanoeng. 3, 157–162 (2008)CrossRefGoogle Scholar
  4. 4.
    Abdul, F., Tahira, M., Nur Aqidab, S.: An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology. Opt Laser Technol. 92, 142–149 (2017)CrossRefGoogle Scholar
  5. 5.
    Zaied, M., Miraoui, I., Boujelbene, M., Bayraktar, E.: Analysis of heat affected zone obtained by CO2 laser cutting of low carbon steel (S235). AIP Conf Proc. 1569, (2013)Google Scholar
  6. 6.
    Bharatish, A., Narasimha Murthy, H.N., Anand, B., Madhusoodana, C.D., Praveena, G.S., Krishna, M.: Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Opt Laser Technol. 53, 22–32 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, Y.: Crack separation mechanism applied in CO2 laser machining of thick Polycrystalline Cubic Nitride (PCBN) tool blanks. Graduate Theses and Dissertations. (2015)
  8. 8.
    Akhmetov, I.D., Zakirova, A.R., Sadykov, I.O.P.: Z.B.: the analysis and selection of methods and facilities for cutting of naturally-deficit materials, Conf. Series. Mater Sci Eng. 134, 012002 (2016)Google Scholar
  9. 9.
    Webster, P.J.L., Yu, J., Z, X., Leung, B.Y.C., Anderson, M.D., Yang, V.X.D., Fraser, J.M.: In situ 24kHz coherent imaging of morphology change in laser percussion drilling. Opt Lett. 35(5), 646–648 (2010)CrossRefGoogle Scholar
  10. 10.
    Yilbas, B.S., Akhtar, S.S., Keles, O.: Laser cutting of small diameter hole in aluminium foam. Int J Adv Manuf Technol. 79(1-4), 101–111 (2015)CrossRefGoogle Scholar
  11. 11.
    Anoop, S.: Laser Machining of Advanced Materials. CRC Press, London (2011)Google Scholar
  12. 12.
    Tanvir, A., M, K., Grambow, C., Anne-Marie, K.: Fabrication of micro/Nano structures on metals by femtosecond laser micromachining. Micromachines. 5, 1219–1253 (2014)CrossRefGoogle Scholar
  13. 13.
    Sibbett, W., Lagatsky, A.A., Brown, C.T.A.: The development and application of femtosecond laser systems. Opt Express. 20, 6989–7001 (2012)CrossRefGoogle Scholar
  14. 14.
    Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol Trans. 46(3), 397–403 (2003)CrossRefGoogle Scholar
  15. 15.
    Brizmer, V., Kligerman, Y.: A laser surface textured journal bearing. J Tribol. 134(3), 031702 (2012)CrossRefGoogle Scholar
  16. 16.
    Yin, B., Li, X., Fu, Y., Yun, W.: Effect of laser textured dimples on the lubrication performance of cylinder liner in diesel engine. Lubr Sci. 24(7), 293–312 (2012)CrossRefGoogle Scholar
  17. 17.
    Ryk, G., Etsion, I.: Testing piston rings with partial laser surface texturing for friction reduction. Wear. 261(7-8), 792–796 (2006)CrossRefGoogle Scholar
  18. 18.
    Etsion, I., Sher, E.: Improving fuel efficiency with laser surface textured piston rings. Tribol Int. 42(4), 542–547 (2009)CrossRefGoogle Scholar
  19. 19.
    Sudeep, U., Tandon, N., Pandey, R.K.: Effects of surface texturing on friction and vibration behaviors of sliding lubricated concentrated point contacts under linear reciprocating motion. Tribol Int. 62, 198–207 (2013)CrossRefGoogle Scholar
  20. 20.
    Sudeep, U., Tandon, N., Pandey, R.K.: Tribological studies of lubricated laser-textured point contacts in rolling/sliding reciprocating motion with investigations of wettability and Nanohardness. Tribol T. 58(4), 625–634 (2015)CrossRefGoogle Scholar
  21. 21.
    Chien-Yu, C., Chung-Jen, C., Bo-Hsiung, W., Wang-Long, L., Chih-Wei, C., Ping-Han, W., Chung-Wei, C.: Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals. Appl Phys A Mater Sci Process. 107(2), 345–350 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhou, M., Yu, J., Li, J., B, W., Zhang, W.: Wetting induced fluid spread on structured surfaces at microscale. Appl Surf Sci. 258(19), 7596–7600 (2012)CrossRefGoogle Scholar
  23. 23.
    Correa, D.S., Almeida, J.M., Almeida, G.F., Cardoso, M.R., De Boni, L., Mendonca, C.R.: Ultrafast laser pulses for structuring materials at micro/Nano scale: from waveguides to Superhydrophobic surfaces. Photo-Dermatology. 4, 1–26 (2017)Google Scholar
  24. 24.
    Truong, S.L., Levi, G., Bozon-Verduraz, F., Petrovskaya, A.V., Simakin, A.V., Shafeev, G.A.: Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced raman scattering of organic molecules. Appl Surf Sci. 254(4), 1236–1239 (2007)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Yang, Y., Zhao, B., Wang, Y., Zhu, X.: Femtosecond laser-induced surface structures to significantly improve the thermal emission of light from metals. Appl Phys B Lasers Opt. 106(2), 349–355 (2012)CrossRefGoogle Scholar
  26. 26.
    Carey, J.E., Crouch, C.H., Shen, M.Y., Mazur, E.: Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett. 30(14), 1773–1775 (2005)CrossRefGoogle Scholar
  27. 27.
    Barmina, E.V., Barberoglou, M., Zorba, V., Simakin, A.V., Stratakis, E., Fotakis, C., Shafeev, G.A.: Laser control of the properties of nanostructures on ta and Ni under their ablation in liquids. J Optoelectron Adv Mater. 12, 495–499 (2010)Google Scholar
  28. 28.
    Neuenschwander, B., Jaeggi, B., Schmid, M., Hennig, G.: Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput. Phys Procedia. 56, 1047–1058 (2014)CrossRefGoogle Scholar
  29. 29.
    Izhak, E.: State of the art in laser surface texturing. J Tribol. 127(1), 248–253 (2005)CrossRefGoogle Scholar
  30. 30.
    Zhuo, W., Quanzhong, Z., Chengwei, W.: Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines. 6, 1606–1616 (2015)CrossRefGoogle Scholar
  31. 31.
    Ibatan, T., Uddina, M.S., Chowdhury, M.A.K.: Recent development on surface texturing in enhancing tribological performance of bearing sliders. Surf Coat Technol. 272, 102–120 (2015)CrossRefGoogle Scholar
  32. 32.
    Lawrence, R., Dowding, C., Waugh, D., Griffiths, J.B.: Laser surface engineering. In: Toyserkani, E., Rasti, N. (eds.) Ultrashort Pulsed Laser Surface Texturing. Woodhead Publishing Series, pp. 442–453 (2015)Google Scholar
  33. 33.
    Anisimov, S.I., Kapeliovich, B.L., Perel’man, T.L.: Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP. 39, 375–377 (1974)Google Scholar
  34. 34.
    Chicbkov, B.N., Momma, C., Nolte, S., Alvensleben, F.Y., Tunnermann, A.: Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A Mater Sci Process. 63(2), 109–115 (1996)CrossRefGoogle Scholar
  35. 35.
    Nolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chichkov, B.N., Wellegehausen, B., Welling, H.: Ablation of metals by ultrashort laser pulses. J Opt Soc Am B. 14(10), 2716–2722 (1997)CrossRefGoogle Scholar
  36. 36.
    Malinauskas, M., Zukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, Y., Ričardas, B., Saulius, J.: Ultrafast laser processing of materials: from science to industry. Light Sci Appl. 5(8), e16133 (2016)CrossRefGoogle Scholar
  37. 37.
    Smith, M.J., Yu-Ting, L., Meng-Ju, S., Mark, T.W., Eric, M., Silvija, G.: Pressure-induced phase transformations during femtosecond-laser doping of silicon. J Appl Phys. 5, 053524 (2011)CrossRefGoogle Scholar
  38. 38.
    Sanjay, M., Vinod, Y.: Laser beam micro machining (LBMM) – a review. Opt Lasers Eng. 73, 89–122 (2015)CrossRefGoogle Scholar
  39. 39.
    Van, D., Dunna, A., Thomas, J.W., Robert, W.K., Patrick, J.S., Emre, E., Colm, C., Jonathan, D.S.: Laser textured surface gradients. Appl Surf Sci. 371, 583–589 (2016)CrossRefGoogle Scholar
  40. 40.
    Chen, J., Sabau, A.S., Jones, J.F., Hackett, A.C., Daniel, C., Warren, D.: Aluminum surface texturing by means of laser interference metallurgy. In: Hyland, M. (ed.) Light Metals 2015. Springer, Cham (2015)Google Scholar
  41. 41.
    Xin, J., Lingling, D.: Fabrication of complex micro/nanopatterns on semiconductors by the multi-beam interference of femtosecond laser. Phys Procedia. 56, 1059–1065 (2014)CrossRefGoogle Scholar
  42. 42.
    Cunha, A., Omar, F.Z., Laurent, P., Ana, M.B.R., Almeida, A., Rui, V., Durrieu, M.C.: Human mesenchymal stem cell behaviour on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine. 10(5), 725–739 (2015)CrossRefGoogle Scholar
  43. 43.
    Cunha, A., Oliveira, V., Serro, A.P., Omar, F.Z., Almeida, A., Durrieu, M.C., Vilar, R.: Ultrafast laser texturing of Ti - 6Al - 4V surfaces for biomedical applications, ICALEO, LIA Pub. 616, 910–918 (2013)Google Scholar
  44. 44.
    Cunha, A., Elie, A., Plawinski, M., Serrod, A.P., Botelho do Rego, A.M., Almeida, A., Urdaci, M.C., Durrieu, M.C., Vilar, R.: Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl Surf Sci. 360, 485–493 (2016)CrossRefGoogle Scholar
  45. 45.
    Erdo Ŀan, M., ÿktem, B., Kalaycıo Ŀlu, H., Yavaf S., Mukhopadhyay, P.K., Eken K., ÿzgören, K., Aykaç, Y., Tazebay, U.H., Ilday F.Y. : Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19, 10986–10996 (2011)Google Scholar
  46. 46.
    Li, B.J., Li, H., Huang, L.J., Ren, N.F., Kong, X.: Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity. Appl Surf Sci. 389, 585–593 (2016)CrossRefGoogle Scholar
  47. 47.
    Martinez-Calderon, M., Manso-Silvan, M., Rodriguez, A., Gomez-Aranzadi, M., Garcia-Ruiz, J.P., Olaizola, S.M., Martin-Palma, R.J.: Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep. 6(1), 36296 (2016)CrossRefGoogle Scholar
  48. 48.
    Ling, E.J.Y., Said, J., Brodusch, N., Gauvin, R., Servio, P., Kietzig, A.M.: Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Appl Surf Sci. 353, 512–521 (2015)CrossRefGoogle Scholar
  49. 49.
    Stasic, J., Gakovic, B., Perrie, W., Watkins, K., Petrovic, S., Trtica, M.: Surface texturing of the carbon steel AISI 1045 using femtosecond laser in single pulse and scanning regime. Appl Surf Sci. 258(1), 290–296 (2011)CrossRefGoogle Scholar
  50. 50.
    Dou, K., Knobbe, E.T., Parkhill, R.L., Wang, Y.: Surface texturing of aluminum alloy 2024-T73 via femto- and nanosecond pulse excimer laser irradiation. IEEE J Sel Top Quantum Electron. 6, 689–695 (2000)CrossRefGoogle Scholar
  51. 51.
    Ahmmed, K.M.T., Ling, E.J.Y., Servio, P., Kietzig, A.M.: Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Laser Eng. 66, 258–268 (2015)CrossRefGoogle Scholar
  52. 52.
    Biswas, S., Karthikeyan, A., Anne-Marie, K.: Effect of repetition rate on femtosecond laser-induced homogenous microstructures. Materials 9, 10232016Google Scholar
  53. 53.
    He, X., Zhong, L., Wang, G., Liao, Y., Liu, Q.: Tribological behavior of femtosecond laser textured surfaces of 20CrNiMo/beryllium bronze tribo-pairs. Ind Lubr Tribol. 67(6), 630–638 (2015)CrossRefGoogle Scholar
  54. 54.
    Gavrilov, A.I., Golovin, D.V., Emelyanenko, A.M., Zayarny, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Saltuganov, P.N., Boinovich, L.B.: Nano and microstructuring of materials surfaces using femtosecond laser pulses, bulletin of the Russian Academy of Sciences. Physics. 80, 358–361 (2016)Google Scholar
  55. 55.
    Raimbault, O., Benayoun, S., Anselme, K., Mauclair, C., Bourgade, T., Kietzig, A.M., Girard-Lauriault, P.L., Valette, S., Donnet, C.: The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Mater Sci Eng C. 69, 311–320 (2016)CrossRefGoogle Scholar
  56. 56.
    Semaltianos, N.G., Perrie, W., French, P., Sharp, M., Dearden, G., Watkins, K.G.: Femtosecond laser surface texturing of a nickel-based superalloy. Appl Surf Sci. 255(5), 2796–2802 (2008)CrossRefGoogle Scholar
  57. 57.
    Jeong, Y.H., Sonc, I.B., Choe, H.C.: Formation of surface roughness on the Ti–35Nb–xZr alloy using femtosecond laser for biocompatibility. Procedia Eng. 10, 2393–2394 (2011)CrossRefGoogle Scholar
  58. 58.
    Jeong, Y.H., Choe, H.C., Brantley, W.A., Sohn, I.B.: Hydroxyapatite thin film coatings on nanotube-formed Ti–35Nb–10Zr alloys after femtosecond laser texturing. Surf Coat Technol. 217, 13–22 (2013)CrossRefGoogle Scholar
  59. 59.
    Nayak, B.K., Gupta, M., Kolasinski, K.: Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl Phys A Mater Sci Process. 90, 399–402 (2008)CrossRefGoogle Scholar
  60. 60.
    Craig, A. Z., Troy, P. A., Pengbo, Li, Michael, JL, Nick, R, Jeffery, ES, Benjamin, T, Dennis, R A: Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid Proc of SPIE. 93510J-935101 (2015)Google Scholar
  61. 61.
    Bashir, S., Shahid Rafique, M., Nathala, C.S., Husinsky, W.: The formation of Nano dimensional structures on the surface of tin exposed to femtosecond laser pulses in the ambient environment of ethanol. Appl Surf Sci. 290, 53–58 (2014)CrossRefGoogle Scholar
  62. 62.
    Barmina, E.V., Stratakis, E., Barberoglou, M., Stolyarov, V.N., Stolyarov, I.N., Fotakis, C., Shafeeva, G.A.: Laser-assisted nanostructuring of tungsten in liquid environment. Appl Surf Sci. 258(15), 5898–5902 (2012)CrossRefGoogle Scholar
  63. 63.
    Catalina, A., Adrian, D., Mihaela, F., Magdalena, U., Marian, Z.: Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl Surf Sci. 278, 347–351 (2013)CrossRefGoogle Scholar
  64. 64.
    Wahab, J.A., Ghazali, M.J., Yusoff, W.M., Sajuri, Z.: Enhancing material performance through laser surface texturing: a review. Trans IMF. 94(4), 193–198 (2016)CrossRefGoogle Scholar
  65. 65.
    Fatima, A., Whitehead, D.J., Mativenga, P.T.: Femtosecond laser surface structuring of carbide tooling for modifying contact phenomena. Proc IME B J Eng Manufact. 228(11), 1325–1337 (2014)CrossRefGoogle Scholar
  66. 66.
    Lian, Y., Deng, J., Xing, Y., Lei, S., Yu, X.: Periodic and uniform nanogratings formed on cemented carbide by femtosecond laser scanning. Appl Surf Sci. 282, 518–524 (2013)CrossRefGoogle Scholar
  67. 67.
    Barbosa, P.A., Bertolete, M., Samad, R.E., Junior, N.D.V., Machado, I.F.: Investigation of Femtosecond Laser Texturing in Cemented Carbide Cutting Tools. Proceedings of Lasers in Manufacturing Conference 2015. Munich doi:
  68. 68.
    Tshabalala, L.C., Ntuli, C.P., Fwamba, J.C., Popoola, P., Pityan, S.L.: Surface texturing of SiAlON ceramic by femtosecond pulsed laser. Proc Manufac. 7, 660–667 (2017)Google Scholar
  69. 69.
    Sciti, D., Trucchi, D.M., Bellucci, A., Orlando, S., Zoli, L., Sani, E.: Effect of surface texturing by femtosecond laser on tantalum carbide ceramics for solar receiver applications. Sol Energ Mat Sol C. 161, 1–6 (2017)CrossRefGoogle Scholar
  70. 70.
    Xing, Y., Deng, J., Wang, X., Meng, R.: Effect of laser surface textures combined with multi-solid lubricant coatings on the tribological properties of Al2O3/TiC ceramic. Wear. 342, 1–343, 12 (2015)Google Scholar
  71. 71.
    Sugihara, T., Enomoto, T.: Performance of cutting tools with dimple textured surfaces: a comparative study of different texture patterns. Precis Eng. 49, 52–60 (2017)CrossRefGoogle Scholar
  72. 72.
    Li, N., Chen, Y., Kong, D., Tan, S.: Experimental investigation with respect to the performance of deep submillimeter scaled textured tools in dry turning titanium alloy Ti-6Al-4V. Appl Surf Sci. 403, 187–199 (2017)CrossRefGoogle Scholar
  73. 73.
    Deng, J., Lian, Y., Wu, Z., Xing, Y.: Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings. Surf Coat Technol. 222, 135–143 (2013)CrossRefGoogle Scholar
  74. 74.
    Zhang, K., Deng, J., Meng, R., Gao, P., Yue, H.: Effect of nano-scale textures on cutting performance of WC/co-based Ti55Al45N coated tools in dry cutting. Int J Refract Met H. 51, 35–49 (2015)CrossRefGoogle Scholar
  75. 75.
    Enomoto, T., Sugihara, T.: Improving anti-adhesive properties of cutting tool surfaces by nano−/micro-textures. CIRP Ann Manuf Technol. 59(1), 597–600 (2010)CrossRefGoogle Scholar
  76. 76.
    Bhaduri, D., Batal, A., Dimov, S.S., Zhang, Z., Dong, H., Fallqvist, M., Saoubid, R. M, Machadod, AR, Vilare, R, Rossib, W : On design and tribological behaviour of laser textured surfaces, Proc CIRP 60, 20–25 (2017)Google Scholar
  77. 77.
    See, T.L.: Laser surface texturing – fundamental study and applications. PhD thesis. In: University of Manchester (2015)Google Scholar
  78. 78.
    Wang, B., Wang, X., Zheng, H., Lam, Y.: Femtosecond laser-induced surface wettability modification of polystyrene surface. Sci China-Phys Mech Astron D. 59(12), 124211 (2016)CrossRefGoogle Scholar
  79. 79.
    Kenji, G., Yuji, Y., Yusuke, F., Masato, T., Ooie, T., Abe, K., Kataoka, M.: Femtosecond laser direct fabrication of micro-grooved textures on a capillary flow immunoassay microchip for spatially-selected antibody immobilization. Sensor Actuator B. 239, 1275–1281 (2017)CrossRefGoogle Scholar
  80. 80.
    Shashank, S., Shin, Y.C.: Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser. Appl Surf Sci. 405, 465–475 (2017)CrossRefGoogle Scholar
  81. 81.
    Fan, W., Qian, J., Baia, F., Li, Y., Wang, C., Zhao, Q.: A facile method to fabricate super amphiphobic polytetra fluoroethylene surface by femtosecond laser pulses. Chem Phys Lett. 644, 261–266 (2016)CrossRefGoogle Scholar
  82. 82.
    Riveiro, A., Soto, R., Comesana, R., Boutinguiza, M., del Val, J., Quintero, F.: Laser surface modification of PEEK. Appl Surf Sci. 258(23), 9437–9442 (2012)CrossRefGoogle Scholar
  83. 83.
    Hammouti, S., Pascale-Hamri, N., Faure, B., Beaugiraud, M., Guibert, C., Mauclair, S., Benayoun, S., Valette, S.: Wear rate control of peek surfaces modified by femtosecond laser. Appl Surf Sci. 357, 1541–1551 (2015)CrossRefGoogle Scholar
  84. 84.
    Marcelo, G., Martinho, J.M.G., Farinha, J.P.S.: Polymer-coated nanoparticles by adsorption of hydrophobically modified poly (N,N-dimethylacrylamide). J Phys Chem B. 117(12), 3416–3427 (2013)CrossRefGoogle Scholar
  85. 85.
    Rose, S., Prevoteau, A., Elziere, P., Hourdet, D., Marcellan, A., Leibler, L.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature. 505(7483), 382–385 (2014)CrossRefGoogle Scholar
  86. 86.
    Tran, N.T.D., Truong, N.P., Gu, W., Jia, Z., Cooper, M.A., Monteiro, M.J.: Timed-release polymer nanoparticles. Biomacromolecules. 14(2), 495–502 (2013)CrossRefGoogle Scholar
  87. 87.
    MacNeill, C.M., Graham, E.G., Levi-Polyachenko, N.H.: Soft template synthesis of donor–acceptor conjugated polymer nanoparticles: structural effects, stability, and photothermal studies. J Polym Sci A Polym Chem. 52(11), 1622–1632 (2014)CrossRefGoogle Scholar
  88. 88.
    Jackson, A.W., Fulton, D.A.: Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds. Polym Chem. 4(1), 31–45 (2013)CrossRefGoogle Scholar
  89. 89.
    Martinez-Tong, D.E., Sanz, M., Ezquerra, T.A., Nogales, A., Marco, J.F., Castillejo, M., Rebollar, E.: Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol a carbonate) in liquid environment. Appl Surf Sci. 418, 522–529 (2017)CrossRefGoogle Scholar
  90. 90.
    Chang, T.C., Malian, P.A.: Excimer pulsed laser ablation of polymers in air and liquids for micromachining applications. J Manuf Process. 18, 1–18,17 (1999)Google Scholar
  91. 91.
    Wang, H., Kongsuwan, P., Satoh, G., Lawrence Yao, Y.: E femtosecond laser induced surface texturing crystallization of a-Si:H thin film. ASME 2010 international manufacturing science and Eng Conf. 2, 255–264 (2010). CrossRefGoogle Scholar
  92. 92.
    Smith, M.J., Yu-Ting Lin, M.-J.S., Winkler, M.T., Mazur, E., Gradeccak, S.: Pressure-induced phase transformations during femtosecond-laser doping of silicon. J Appl Phys. 110(5), 053524 (2011)CrossRefGoogle Scholar
  93. 93.
    Oliveira, V., Sharma, S.P., de Moura, M.F.S.F., Moreira, R.D.F., Vilar, R.: Surface treatment of CFRP composites using femtosecond laser radiation. Opt laser Eng. 94, 37–43 (2017)CrossRefGoogle Scholar
  94. 94.
    Koch, J., korte, F., bauer, T., fallnich, C., Ostendorf, A., Chichkov, B.N.: Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Appl Phys A Mater Sci Process. 81(2), 325–328 (2005)CrossRefGoogle Scholar
  95. 95.
    Tagawa, N., Takada, M., Mori, A., Sawada, H., Kawahara, K.: Development of contact sliders with nanotextures by femtosecond laser processing. Tribo Lett. 24(2), 143–149 (2006)CrossRefGoogle Scholar
  96. 96.
    Zha, J., Ali, S.S., Peyroux, J., Batisse, N., Claves, D., Dubois, M., Alexander, P.K., Monier, G., Darmanin, T., Guittard, F., Alekseiko, L.N.: Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. J Fluor Chem. 200, 123–132 (2017)CrossRefGoogle Scholar
  97. 97.
    Nava, G., Osellame, R., Ramponi, R., Vishunubhatla, K.: Femtosecond laser micro-texturing of silicon using high repetition rate pulses for photovoltaic applications. International Conference on Fibre Optics and Photonics. (2012).
  98. 98.
    Yang, H., Zhou, L., He, H., Qian, J., Hao, J., Zhu, H.: Textures induced by a femtosecond laser on silicon surfaces under various environments. J Russ Laser Res. 33(4), 349–355 (2012)CrossRefGoogle Scholar
  99. 99.
    Albu, C., Dinescu, A., Filipescu, M., Ulmeanu, M., Zamfirescu, M.: Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl Surf Sci. 278, 347–351 (2013)CrossRefGoogle Scholar
  100. 100.
    Radu, C., Simion, S., Zamfirescu, M., Ulmeanu, M., Enculescu, M., Radoiu, M.: Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses. J Appl Phys. 110(3), 034901 (2011)CrossRefGoogle Scholar
  101. 101.
    Wang, Q., Zhou, W.: Direct fabrication of cone array microstructure on monocrystalline silicon surface by femtosecond laser texturing. Opt Mater. 72, 508–512 (2017)CrossRefGoogle Scholar
  102. 102.
    Shang, Q., Yu, A., Wu, J., Shi, C., Niu, W.: Influence of heat affected zone on tribological properties of CuSn6 bronze laser dimple textured surface. Tribol Int. 105, 158–165 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIIT MadrasChennaiIndia

Personalised recommendations