Development of Design Chart for Jute Geotextiles Reinforced Low Volume Road Section by Finite Element Analysis


A 3D finite element (FE) analysis has been carried out to propose a design chart for Sand-Jute geotextiles-Sand (SJS) reinforced low volume road section on soft subgrade foundation. The SJS (Jute geotextile with a thin layer of sand on each side of it) layer has been placed in between the subgrade soil and the top granular layer. In the present FE analysis, nonlinear behaviour of low volume road materials has been considered. The rutting behaviour of a low volume road section with jute geotextiles reinforcement layer has been investigated. Results of the FE analysis reveal that the improvement due to jute geotextiles is more pronounced in road sections with thin top granular layer than in other sections. An attempt has also been made to study the mobilization of tensile strength of jute geotextiles under small and large rut depths. In the case of large rut depth (75 mm), it has been found that a minimum thickness of the top granular layer of 0.2 m is adequate for woven jute geotextiles with stiffness of 20 kN/m. For benefit of the practising engineers dealing with designing jute geotextiles reinforced low volume road section, a design chart has been proposed for 50-mm rut depth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12



Canterbury accelerated pavement testing indoor facility


California bearing ratio


California bearing ratio of top granular layer


California bearing ratio of subgrade soil


commercial vehicles per day


reinforced low volume road section after degradation of JGT


equivalent standard axle load


finite element


finite element method


Indian Road Congress Standard Practice


Jute geotextiles


low volume road


machine direction


reinforced low volume road section before degradation of JGT




unreinforced low volume road section


unconsolidated undrained


cross-machine direction


two dimensional


three dimensional

A :

the actual area of a tyre imprint

β :

angle of internal friction for Drucker-Prager plasticity

d :

cohesion intercept for Drucker-Prager plasticity

c GL :

cohesion of top granular layer material

c u :

undrained cohesion of subgrade soil

E GL :

resilient modulus of top granular layer material

h :

thickness of top granular layer

ϕGL :

angle of internal friction of top granular layer material

M R :

resilient modulus of subgrade soil

N :

number of load repetitions of an axle load, P (kN)

N s :

number of repetitions of an axle load, Ps (kN)

P s :

equivalent static load

P :

one fourth of transient axle load

P c :

tyre contact pressure

P W :

wheel load

T MJ :

the percent utilization of JGT strength

T JUlt :

the ultimate tensile strength of the JGT

u x :

displacement in x-direction

u y :

displacement in y-direction

ϕ SG :

angle of internal friction of subgrade soil layer

σ J :

major principle stress in JGT

σ x :

maximum horizontal stress in x-direction

σ y :

maximum horizontal stress in y-direction

τ xy :

shear stress in xy-plane


  1. AASHTO: Guide for design of pavement structures. AASHTO, Washington (1993)

    Google Scholar 

  2. Abu-Farsakh, M.Y., Gu, J., Voyiadjis, G.Z., Chen, Q.: Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement. Int. J. Pave. Engg. 15(9), 786–798 (2014)

    Google Scholar 

  3. ASTM: D5261 Standard test method for measuring mass per unit area of geotextiles. West Conshohocken, Pennsylvania (1992)

    Google Scholar 

  4. ASTM D 4595: Standard test method for tensile properties of geotextiles by the wide-width strip method. West Conshohocken, Pennsylvania, USA (1986)

    Google Scholar 

  5. ASTM D 5199: Standard test method for measuring the nominal thickness of geosynthetics. West Conshohocken, Pennsylvania, USA (2001)

    Google Scholar 

  6. ASTM D4751: Standard test methods for determining apparent opening size of a geotextile. ASTM, West Conshohocken, Pennsylvania (1999)

    Google Scholar 

  7. Basu, G., Roy, A.N., Bhattacharyya, S.K., Ghosh, S.K.: Construction of unpaved rural road using jute–synthetic blended woven geotextile—a case study. Geotext. Geomembr. 27(6), 506–512 (2009)

    Google Scholar 

  8. Bhandari, A., Han, J.: Investigation of geotextile–soil interaction under a cyclic vertical load using the discrete element method. Geotext. Geomembr. 28(1), 33–43 (2010)

    Google Scholar 

  9. Bowles, J.E.: Foundation analysis and design, 5th edn. McGraw-Hill Book, Singapore (1996)

    Google Scholar 

  10. Cho, Y.H., McCullough, B., Weissmann, J.: Considerations on finite-element method application in pavement structural analysis. Trans. Res. Rec.J.Trans. Research Board. (1539). 96–101 (1996)

  11. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10(2), 57–165 (1952)

    MathSciNet  MATH  Google Scholar 

  12. Fannin, R.J., Sigurdsson, O.: Field observations on stabilization of unpaved roads with geosynthetics. J. Geotech. Engg. 122(7), 544–553 (1996)

    Google Scholar 

  13. Garg, N., Thompson, M.: Triaxial characterization of minnesotaroad research project granular materials. Transport. Res. Rec., J. Transport. Res.Brd. (1577), 27–36 (1997)

  14. Ghosh, S.K., Bhattacharyya, R., Mondal, M.M., Choudhury, P.K., Sanyal, T.: Design and development of woven jute geotextiles for potential applications in the field of geotechnical constructions. J. Text. Ins. 106(5), 550–563 (2015)

    Google Scholar 

  15. Giroud, J.P., Han, J.: Design method for geogrid-reinforced unpaved roads. I. Development of design method. ASCE. J. Geotech. Geoenviron. Eng. 130(8), 775–786 (2004)

    Google Scholar 

  16. Gupta, A.: Finite element analysis of granular pavements considering material nonlinearity. Asian Transport Studies. 4(3), 550–564 (2017)

    Google Scholar 

  17. Gupta, A., Kumar, P., Rastogi, R.: Mechanistic–empirical approach for design of low volume pavements. Int. J. Pave. Engg. 16(9), 797–808 (2015a)

    Google Scholar 

  18. Gupta, A., Kumar, P., Rastogi, R.: Critical pavement response analysis of low-volume pavements considering nonlinear behavior of materials. Transport. Research Record: J. Transport. Res. Brd. 3–11(2474), (2015b)

  19. Hadi, M.N., Bodhinayake, B.C.: Non-linear finite element analysis of flexible pavements. ELSEVIER. Adv.Engg. Soft. 34(11–12), 657–662 (2003)

    Google Scholar 

  20. Hausmann, M.R.: Geotextiles for unpaved roads—a review of design procedures. Geotex.Geomembr. 5(3), 201–233 (1987)

    Google Scholar 

  21. Helwany, S., Dyer, J., Leidy, J.: Finite-element analyses of flexible pavements. ASCE. J. Transport. Eng. 124(5), 491–499 (1998)

    Google Scholar 

  22. Hibbit, H.D., Karlsson, B.I., Sorensen, E.P. ABAQUS user manual, version 6.12. Simulia, Providence, Rhode Island, United States, (2012)

    Google Scholar 

  23. Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S.M., Brönnimann, R.: Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotext. Geomembr. 24(1), 21–37 (2006)

    Google Scholar 

  24. IRC: 37 Guidelines for the design of flexible pavements. IRC, New Delhi, India (2012)

    Google Scholar 

  25. IRC SP 72: Guidelines for the design of flexible pavements for low volume road. IRC, New Delhi (2015)

    Google Scholar 

  26. IRC SP-20: Manual for route location, design, construction and maintenance of rural roads. IRC, New Delhi, India (2002)

    Google Scholar 

  27. IS 14715 (Part 1) Jute geotextiles, strengthing of subgrade in roads: specifications. IS, New Delhi, India ( 2016 )

    Google Scholar 

  28. Khan, A.J., Huq, F., Hossain, S.Z.: Application of jute geotextiles for rural road pavement construction. In: Ground improvement and geosynthetics (ASCE). Sanghai, China, pp. 370–379 (2014)

    Google Scholar 

  29. Kim, M., Tutumluer, E., Kwon, J.: Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements. ASCE. Int. J. Geomech. 9(5), 195–208 (2009)

    Google Scholar 

  30. Kuo, C.M., Chou, F.J.: Development of 3-D finite element model for flexible pavements. J. Chinese Inst. Eng. 27(5), 707–717 (2004)

    Google Scholar 

  31. Leng, J., Gabr, M.: Characteristics of geogrid-reinforced aggregate under cyclic load. Trans. Res. Rec. J. Trans. Res. Board. 29–35(1786), (2002)

  32. Leng, J., Gabr, M.A.: Numerical analysis of stress–deformation response in reinforced unpaved road sections. Geosynth. Int. 12(2), 111–119 (2005)

    Google Scholar 

  33. Loulizi, A., Al-Qadi, I.L., Elseifi, M.: Difference between in situ flexible pavement measured and calculated stresses and strains. ASCE. J. Transport. Eng. 132(7), 574–579 (2006)

    Google Scholar 

  34. Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., Bergado, D.T.: Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohyd. Polym. 82(4), 1090–1096 (2010)

    Google Scholar 

  35. Midha, V.K., Joshi, S., Kumar, S.S.: Performance of chemically treated jute geotextile in unpaved roads at different in situ conditions. J. Inst.Eng. (India). Series E. 98(1), 47–54 (2017)

    Google Scholar 

  36. Mosadegh, A., Nikraz, H.: Bearing capacity evaluation of footing on a layered-soil using ABAQUS. J. Earth. Sci.Clim. Change. 6(3), 264 (2015)

    Google Scholar 

  37. Mulungye, R.M., Owende, P.M.O., Mellon, K.: Finite element modelling of flexible pavements on soft soil subgrades. Mat.Desig. 28(3), 739–756 (2007)

    Google Scholar 

  38. Oloo, S.Y., Fredlund, D.G., Gan, J.K.: Bearing capacity of unpaved roads. Canad. Geotech. J. 34(3), 398–407 (1997)

    Google Scholar 

  39. Patra, S., Bera, A.K.: Time dependent field CBR and its regression model. Int. J. Civ. Eng. Tech. 8(1), 82–88 (2017)

    Google Scholar 

  40. Patra, S., Bera, A.K.: Determination of top granular layer thickness for JGT reinforced low volume rural road based on FE analysis. In: 53rdIndian Geotechnical Conference 2018, pp. 1–8. Indian Institute of Science, Bengaluru, India. pp. (TH 09_20) (2018)

  41. Patra, S., Bera, A.K.: Field and numerical investigation on time-dependent behavior of jute geotextile (JGT) reinforced rural road. In: Adimoolam, B., Banerjee, S. (eds.) Soil dynamics and earthquake geotechnical engineering, vol. 15, pp. 207–216. Lecture Notes in Civil Engineering.Springer, Singapore (2019a)

    Google Scholar 

  42. Patra, S., Bera, A.K.: Effect of granular layer strength and thickness on jute geotextiles reinforced rural road. In: Sundaram, R., Shahu, J., Havanagi, V. (eds.) Geotechnics for transportation infrastructure, vol. 29, pp. 435–448. Lecture Notes in Civil Engineering, Springer, Singapore (2019b)

    Google Scholar 

  43. Perkins, S.W.: Constitutive modeling of geosynthetics. Geotext.Geomembr. 18(5), 273–292 (2000)

    Google Scholar 

  44. Perkins, S.W., Edens, M.Q.: Finite element and distress models for geosynthetic-reinforced pavements. Int. J. Pave. Eng. 3(4), 239–250 (2002)

    Google Scholar 

  45. Perkins, S.W., Christopher, B.R., Cuelho, E.L., Eiksund, G.R., Schwartz, C.S., Svanø, G.: A mechanistic–empirical model for base-reinforced flexible pavements. Int. J. Pave. Eng. 10(2), 101–114 (2009)

    Google Scholar 

  46. Perkins, S.W., Christopher, B.R., Lacina, B.A., Klompmaker, J.: Mechanistic-empirical modeling of geosynthetic-reinforced unpaved roads. ASCE. Int. J.Geomech. 12(4), 370–380 (2012)

    Google Scholar 

  47. Rahman, M.M., Saha, S., Hamdi, A.S.A., Alam, M.J.B.: Development of 3-D finite element models for geo-jute reinforced flexible pavement. Civ. Eng. J. 5, 437–446 (2019)

    Google Scholar 

  48. Ramaswamy, S.D., Aziz, M.A.: Jute geotextiles for roads. In: Proceedings of International Workshop on Geotextile, Bangalore, India, November, 1989, vol. 1989, pp. 259–270

  49. Ranganathan, S.R.: Development and potential of jute geotextiles. Geotext. Geomembr. 13(6–7), 421–433 (1994)

    Google Scholar 

  50. Rao, A.S.: Jute geotextile application in Kakinada port area. In: Proceedings of National Seminar on Jute Geotextile and Innovative Jute Products. New Delhi, India (2003)

    Google Scholar 

  51. Saad, B., Mitri, H., Poorooshasb, H.: Three-dimensional dynamic analysis of flexible conventional pavement foundation. ASCE. J.Trans.Eng. 131(6), 460–469 (2005)

    Google Scholar 

  52. Saad, B., Mitri, H., Poorooshasb, H.: 3D FE analysis of flexible pavement with geosynthetic reinforcement. ASCE. J. Trans. Eng. 132(5), 402–415 (2006)

    Google Scholar 

  53. Saha, P., Roy, D., Manna, S., Adhikari, B., Sen, R., Roy, S.: Durability of transesterified jute geotextiles. Geotext.Geomembr. 35, 69–75 (2012)

    Google Scholar 

  54. Saleh, M., Steven, B., Alabaster, D.: Three-dimensional nonlinear finite element model for simulating pavement response: study at Canterbury accelerated pavement testing indoor facility, New Zealand. Transport. Res. Rec., J. Transport. Res. Board. (1823), 153–162 (2003)

  55. Sanyal, T.: Jute geotextiles and their applications in civil engineering, pp. 65–87. Springer, Singapore (2017)

    Google Scholar 

  56. Sarsby, R.W.: Use of ‘limited life geotextiles’ (LLGs) for basal reinforcement of embankments built on soft clay. Geotext. Geomembr. 25(4–5), 302–310 (2007)

    Google Scholar 

  57. Subaida, E.A., Chandrakaran, S., Sankar, N.: Experimental investigations on tensile and pullout behaviour of woven coir geotextiles. Geotext Geomembr. 26(5), 384–392 (2008)

    Google Scholar 

  58. Subaida, E.A., Chandrakaran, S., Sankar, N.: Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotext.Geomembr. 27(3), 204–210 (2009)

    Google Scholar 

  59. Taherkhani, H., Jalali, M.: Investigating the performance of geosynthetic-reinforced asphaltic pavement under various axle loads using finite-element method. Road Mat. Pave. Desg. 18(5), 1200–1217 (2017)

    Google Scholar 

  60. Wathugala, G., Huang, B., Pal, S.: Numerical simulation of geosynthetic-reinforced flexible pavements. Transport. Res. Rec.: J. Transport. Res.Brd. 58–65(1534), (1996)

  61. Yoo, P.J., Al-Qadi, I.L.: Effect of transient dynamic loading on flexible pavements. Transport. Res. Rec. 129–140(1990, 1), (2007)

  62. Zaghloul, S.M., White, T.: Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement. Transport. Res. Rec. (1388), 60–69 (1993)

Download references


The authors express their sincere gratitude to the Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, for allowing us the facility of numerical analysis and continuous support to carry out the research work.

Author information



Corresponding author

Correspondence to Ashis Kumar Bera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patra, S., Bera, A.K. Development of Design Chart for Jute Geotextiles Reinforced Low Volume Road Section by Finite Element Analysis. Transp. Infrastruct. Geotech. 8, 88–113 (2021).

Download citation


  • Low volume road
  • Jute geotextiles
  • FEM
  • Design chart
  • Tensile strength