Compressed and canalized emission of quantum emitters in MIM nano-cavities


Photon-mediated interactions in quantum systems represent a crucial point in quantum mechanics for the design and analysis of scalable quantum information systems. In this communication we numerically demonstrate that quantum emitters can interact coherently with a sub-wavelength plasmonic nano-cavity. In particular, we report how the interplay between the near field of quantum emitters and the gap plasmon field can induce a striking canalization of the emission. This effect is observed in a cascade of metal–insulator–metal nanostructures (MIM), interlocked by a nano-cavity containing the quantum emitters, where the selective reshaping of the radiated field occurs. Our study pave the way for the implementation of cavity-mediated quantum gates and for the realization of scalable and tunable quantum systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Faraon, A., Majumdar, A., Englund, D., Kim, E., Bajcsy, M., Vučković, J.: Integrated quantum optical networks based on quantum dots and photonic crystals. N. J. Phys. 13(5), 055025 (2011)

    Article  Google Scholar 

  2. 2.

    Sipahigil, A., Evans, R.E., Sukachev, D.D., Burek, M.J., Borregaard, J., Bhaskar, M.K., Nguyen, C.T., Pacheco, J.L., Atikian, H.A., Meuwly, C., et al.: An integrated diamond nanophotonics platform for quantum-optical networks. Science 354(6314), 847 (2016)

    Article  Google Scholar 

  3. 3.

    Stannigel, K., Rabl, P., Zoller, P.: Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. N. J. Phys. 14(6), 063014 (2012)

    Article  Google Scholar 

  4. 4.

    DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D., Majer, J., Blais, A., Frunzio, L., Girvin, S., et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240 (2009)

    Article  Google Scholar 

  5. 5.

    Fu, X., Rol, M.A., Bultink, C.C., Van Someren, J., Khammassi, N., Ashraf, I., Vermeulen, R., De Sterke, J., Vlothuizen, W., Schouten, R. et al.: An experimental microarchitecture for a superconducting quantum processor. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 813–825 (2017)

  6. 6.

    Northup, T., Blatt, R.: Quantum information transfer using photons. Nat. Photon. 8(5), 356 (2014)

    Article  Google Scholar 

  7. 7.

    Zhang, J., Liu, Y.X., Li, C.W., Tarn, T.J., Nori, F.: Generating stationary entangled states in superconducting qubits. Phys. Rev. A 79(5), 052308 (2009)

    Article  Google Scholar 

  8. 8.

    Kindem, J.M., Ruskuc, A., Bartholomew, J.G., Rochman, J., Huan, Y.Q., Faraon, A.: Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 1–4 (2020)

    Article  Google Scholar 

  9. 9.

    Keller, M., Lange, B., Hayasaka, K., Lange, W., Walther, H.: Deterministic cavity quantum electrodynamics with trapped ions. J. Phys. B At. Mol. Opt. Phys. 36(3), 613 (2003)

    Article  Google Scholar 

  10. 10.

    Rakher, M., Stoltz, N., Coldren, L., Petroff, P., Bouwmeester, D.: Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Phys. Rev. Lett. 102(9), 097403 (2009)

    Article  Google Scholar 

  11. 11.

    Gerard, J.M.: Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. In: Single Quantum Dots, pp. 269–314. Springer, New York (2003)

  12. 12.

    Vicknesh, S., Li, F., Mi, Z.: Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes. Appl. Phys. Lett. 94(8), 081101 (2009)

    Article  Google Scholar 

  13. 13.

    Laucht, A., Villas-Bôas, J., Stobbe, S., Hauke, N., Hofbauer, F., Böhm, G., Lodahl, P., Amann, M.C., Kaniber, M., Finley, J.: Mutual coupling of two semiconductor quantum dots via an optical nanocavity. Phys. Rev. B 82(7), 075305 (2010)

    Article  Google Scholar 

  14. 14.

    Lio, G.E., Madrigal, J.B., Xu, X., Peng, Y., Pierini, S., Couteau, C., Jradi, S., Bachelot, R., Caputo, R., Blaize, S.: Integration of nanoemitters onto photonic structures by guided evanescent-wave nano-photopolymerization. J. Phys. Chem. C 123(23), 14669 (2019)

    Article  Google Scholar 

  15. 15.

    Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87(2), 347 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kim, H., Sridharan, D., Shen, T.C., Solomon, G.S., Waks, E.: Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. Opt. Express 19(3), 2589 (2011)

    Article  Google Scholar 

  17. 17.

    Majer, J., Chow, J., Gambetta, J., Koch, J., Johnson, B., Schreier, J., Frunzio, L., Schuster, D., Houck, A.A., Wallraff, A., et al.: Coupling superconducting qubits via a cavity bus. Nature 449(7161), 443 (2007)

    Article  Google Scholar 

  18. 18.

    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)

    Article  Google Scholar 

  19. 19.

    Rosenfeld, W., Hocke, F., Henkel, F., Krug, M., Volz, J., Weber, M., Weinfurter, H.: Towards long-distance atom-photon entanglement. Phys. Rev. Lett. 101(26), 260403 (2008)

    Article  Google Scholar 

  20. 20.

    Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195 (2012)

    Article  Google Scholar 

  21. 21.

    Borregaard, J., Kómár, P., Kessler, E.M., Lukin, M.D., Sørensen, A.S.: Long-distance entanglement distribution using individual atoms in optical cavities. Phys. Rev. A 92(1), 012307 (2015)

    Article  Google Scholar 

  22. 22.

    Passler, N.C., Gubbin, C.R., Folland, T.G., Razdolski, I., Katzer, D.S., Storm, D.F., Wolf, M., De Liberato, S., Caldwell, J.D., Paarmann, A.: Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18(7), 4285 (2018)

    Article  Google Scholar 

  23. 23.

    Lio, G.E., Palermo, G., Caputo, R., De Luca, A.: A comprehensive optical analysis of nanoscale structures: from thin films to asymmetric nanocavities. RSC Adv. 9(37), 21429 (2019)

    Article  Google Scholar 

  24. 24.

    Lee, I.H., Yu, E.S., Lee, S.H., Lee, S.D.: Full-coloration based on metallic nanostructures through phase discontinuity in Fabry–Perot resonators. Opt. Express 27(23), 33098 (2019)

    Article  Google Scholar 

  25. 25.

    Eizner, E., Avayu, O., Ditcovski, R., Ellenbogen, T.: Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano Lett. 15(9), 6215 (2015)

    Article  Google Scholar 

  26. 26.

    Shalaginov, M.Y., Vorobyov, V.V., Liu, J., Ferrera, M., Akimov, A.V., Lagutchev, A., Smolyaninov, A.N., Klimov, V.V., Irudayaraj, J., Kildishev, A.V., et al.: Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial. Laser Photon. Rev. 9(1), 120 (2015)

    Article  Google Scholar 

  27. 27.

    Sakotic, Z., Krasnok, A., Cselyuszka, N., Jankovic, N., Alú, A.: Berreman Embedded Eigenstates for Narrowband Absorption and Thermal Emission. arXiv preprint arXiv:2003.07897 (2020)

  28. 28.

    Fofang, N.T., Grady, N.K., Fan, Z., Govorov, A.O., Halas, N.J.: Plexciton dynamics: exciton–plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. 11(4), 1556 (2011)

    Article  Google Scholar 

Download references


This research has been supported by the “AIM: Attraction and International Mobility”- PON R&I 2014-2020 Calabria. The authors thank the Area della Ricerca di Roma 2, Tor Vergata, for the access to the ICT Services (ARToV-CNR) for the use of the COMSOL Multiphysics Platform, Origin Lab and Matlab.

Author information



Corresponding authors

Correspondence to Giovanna Palermo or Giuseppe E. Lio or Giuseppe Strangi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palermo, G., Lio, G.E. & Strangi, G. Compressed and canalized emission of quantum emitters in MIM nano-cavities. Quantum Stud.: Math. Found. (2020).

Download citation


  • Cascade gap nano-cavity
  • Quantum emitters
  • Quantum gates
  • MIM

Mathematics Subject Classification

  • 81V10
  • 78M50