The post-determined block universe

Abstract

A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world. I argue that unitary evolution is consistent with both quantum measurements and the apparent classicality at the macroscopic level. This allows us to take the wavefunction as ontic (but holistic), but a global consistency condition has to be introduced to ensure this compatibility. I justify this by appealing to sheaf cohomology on the block universe. As a consequence, Quantum Theory turns out to be consistent with a definite four-dimensional spacetime, even if this may consist of superpositions of different geometries. But the block universe subject to global consistency gains a new flavor, which for an observer experiencing the flow of time appears as “superdeterministic” or “retrocausal”, although this does not manifest itself in observations in a way which would allow the violation of causality. However, the block universe view offers another interpretation of this behavior, which makes more sense, and removes the tension with causality. Such a block universe subject to global consistency appears thus as being post-determined. Here “post-determined” means that for an observer the block universe appears as not being completely determined from the beginning, but each new quantum observation eliminates some of the possible block universe solutions consistent with the previous observations. I compare the post-determined block universe with other proposals: the presentist view, the block universe, the splitting block universe, and the growing block universe, and explain how it combines their major advantages in a qualitatively different picture.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    According to Bell, “No one can understand this theory until he is willing to think of [the wavefunction] as a real objective field rather than just a ‘probability amplitude’. Even though it propagates not in 3-space but in 3N-space.” [17] p. 128.

References

  1. 1.

    Adlam, E.: Spooky action at a temporal distance. Entropy 20(1) (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, 1410–1416 (1964)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Aharonov, Y., Cohen, E., Grossman, D., Elitzur, A.C.: Can a future choice affect a past measurement’s outcome? Ann. Phys. 355, 258–268 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315 (1991)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 78(6), 064051 (2008)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Araki, H., Yanase, M.M.: Measurement of quantum mechanical operators. Phys. Rev. 120(2), 622 (1960)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Argaman, N.: On Bell’s theorem and causality. Preprint arXiv:0807.2041, (2008)

  8. 8.

    Arita, Y., Mazilu, M., Dholakia, K.: Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  9. 9.

    Aspect, A.: Bell’s Inequality Test: More Ideal than Ever (1999)

    Article  Google Scholar 

  10. 10.

    Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. (49) (1982)

  11. 11.

    Bacciagaluppi, G.: Remarks on space-time and locality in Everett’s interpretation. In: Placek, T., Butterfield, J. (eds.) Non-locality and modality, vol. 64, pp. 105–122. Springer, New York (2002)

    Google Scholar 

  12. 12.

    Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7(8), 2333 (1973)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Bell, J.S.: On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Bell, J.S.: Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  18. 18.

    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Bohm, D.: A suggested interpretation of quantum mechanics in terms of “hidden” variables. I and II. Phys. Rev. 85(2), 166–193 (1952)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Bohm, D.: Wholeness and the Implicate Order (1995)

  21. 21.

    Bohm, D.: Causality and chance in modern physics. Routledge, London (2004)

    Google Scholar 

  22. 22.

    Bohr, N.: Atomic Physics and Human Knowledge (1958)

    Article  Google Scholar 

  23. 23.

    Born, M.: Zur Quantenmechanik der Stoßvorgänge. In: Reprinted and translated in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton, p. 52 (1926)

  24. 24.

    Bose, S., Mazumdar, A., Morley, G.W., Ulbricht, H., Toroš, M., Paternostro, M., Geraci, A.A., Barker, P.F., Kim, M.S., Milburn, G.: Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119(24), 240401 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    MATH  Article  Google Scholar 

  26. 26.

    Bredon, G.E.: Sheaf theory, vol. 170. Springer, New York (1997)

    Google Scholar 

  27. 27.

    Broad, C.D.: Scientific thought. Routledge & Kegan Paul, London (1923)

    Google Scholar 

  28. 28.

    Burgos, M.E.: Contradiction between conservation laws and orthodox quantum mechanics. J. Mod. Phys. 1(2), 137 (2010)

    Article  Google Scholar 

  29. 29.

    Busch, P.: Translation of “Die Messung quantenmechanischer Operatoren” by EP\(\sim \) Wigner (2010). arXiv:1012.4372

  30. 30.

    Chevalley, C.: The algebraic theory of spinors and Clifford algebras (Collected works), vol. 2. Springer, New York (1997)

    Google Scholar 

  31. 31.

    Christodoulou, M., Rovelli, C.: On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B 792, 64–68 (2019)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Cohen, E., Aharonov, Y.: Quantum to classical transitions via weak measurements and post-selection. In: Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific Publishing Co., Singapore (2016). arXiv:1602.05083

    Google Scholar 

  33. 33.

    Cohen, E., Cortês, M., Elitzur, A.C., Smolin, L.: Realism and causality I: Pilot wave and retrocausal models as possible facilitators. arXiv:1902.05108 (2019)

  34. 34.

    Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)

    Article  Google Scholar 

  35. 35.

    Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108(15), 150402 (2012)

    Article  Google Scholar 

  36. 36.

    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58(3), 647 (1986)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Cramer, J.G.: An overview of the transactional interpretation of quantum mechanics. Int. J. Theor. Phys. 27(2), 227–236 (1988)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Crumeyrolle, A.: Orthogonal and symplectic Clifford algebras. Spinor structures. Kluwer Academic Publishers, Dordrecht/Boston (1990)

  39. 39.

    Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: Naive realism about operators. Erkenntnis 45(2–3), 379–397 (1996)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    de Beauregard, O.C.: Time symmetry and the Einstein paradox. Il Nuovo Cimento B (1971-1996) 42(1), 41–64 (1977)

    Article  Google Scholar 

  41. 41.

    de Broglie, L.: La théorie de la double solution. Gauthier-Villars, Paris (1956)

    Google Scholar 

  42. 42.

    de Broglie, L.: Une tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution. Gauthier-Villars, Paris (1956)

    Google Scholar 

  43. 43.

    Deutsch, D.: Vindication of quantum locality. Proc. R. Soc. Lond. Ser. A 468(2138), 531–544 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1958)

    Google Scholar 

  45. 45.

    Dürr, D., Goldstein, S., Zanghì, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds) Bohmian mechanics and quantum theory: an appraisal, pp. 21–44. Springer, New York (1996). arXiv:quant-ph/9511016

    Google Scholar 

  46. 46.

    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    MATH  Article  Google Scholar 

  47. 47.

    Ellis, G.F.R.: Physics in the real universe: Time and spacetime. Gen. Relat. Grav. 38(12), 1797–1824 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Ellis, G.F.R.: On the flow of time. Preprint arXiv:0812.0240 (2008)

  49. 49.

    Ellis, G.F.R.: The evolving block universe and the meshing together of times. Ann. N. Y. Acad. Sci. 1326(1), 26–41 (2014)

    Article  Google Scholar 

  50. 50.

    Ellis, G.F.R., Rothman, T.: Time and spacetime: the crystallizing block universe. IJTP 49(5), 988–1003 (2010)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Progr. Phys. 77(1), 016001 (2013)

    MathSciNet  Article  Google Scholar 

  52. 52.

    Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7(1–2), 51–68 (1977)

    Article  Google Scholar 

  53. 53.

    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)

    MathSciNet  Article  Google Scholar 

  54. 54.

    Everett, H.: The theory of the universal wave function. In: The Many-Worlds Hypothesis of Quantum Mechanics, pp. 3–137. Princeton University Press, Princeton (1973)

    Google Scholar 

  55. 55.

    Fine, A., Brown, H.R.: The shaky game: Einstein, realism and the quantum theory. Am. J. Phys. 56, 571 (1988)

    Article  Google Scholar 

  56. 56.

    Friederich, S., Evans, P.W.: Retrocausality in quantum mechanics. In: E.N. Zalta (ed.) The Stanford encyclopedia of philosophy, summer 2019 edn. Metaphysics Research Lab, Stanford University (2019)

  57. 57.

    Ghirardi, G., Grassi, R., Pearle, P.: Relativistic dynamical reduction models: general framework and examples. Found. Phys. 20(11), 1271–1316 (1990)

    MathSciNet  Article  Google Scholar 

  58. 58.

    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics of microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech 6(4), 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Goldstein, S., Zanghì, N.: Reality and the role of the wave function in quantum theory. In: The wave function: essays on the metaphysics of quantum mechanics, pp. 91–109. Oxford University Press, Oxford (2013)

    Google Scholar 

  61. 61.

    Groenewold, H.J.: On the Principles of Elementary Quantum Mechanics. Springer, Netherlands (1946)

    Google Scholar 

  62. 62.

    Hardy, L.: Are quantum states real? Int. J. Mod. Phys. D. 27(01n03), 1345012 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Harrigan, N., Spekkens, R.W.: Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40(2), 125–157 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Hawking, S.W.: The occurrence of singularities in cosmology. Proc. R. Soc. A Math. Phys. 294(1439), 511–521 (1966)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Hawking, S.W.: The occurrence of singularities in cosmology. II. Proc. R. Soc. A Math. Phys. 295(1443), 490–493 (1966)

    MathSciNet  MATH  Google Scholar 

  66. 66.

    Hawking, S.W.: The occurrence of singularities in cosmology. III. Causality and singularities. P. R. Soc. A Math. Phys. 300(1461), 187–201 (1967)

    MATH  Google Scholar 

  67. 67.

    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14(10), 2460 (1976)

    MathSciNet  Article  Google Scholar 

  69. 69.

    Hawking, S.W., Penrose, R.W.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 314(1519), 529–548 (1970)

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Hawking, S.W., Penrose, R.W.: The Nature of Space and Time. Princeton University Press, Princeton and Oxford (1996)

    Google Scholar 

  71. 71.

    Heisenberg, W.: The Physicist’s Conception of Nature (1958)

  72. 72.

    Hestenes, D.: Space-Time Algebra. Gordon & Breach, New York (1966)

    Google Scholar 

  73. 73.

    Hoefer, C.: Freedom from the inside out. R. Inst. Philos. Suppl. 50, 201–222 (2002)

    Article  Google Scholar 

  74. 74.

    Howard, D.: Nicht Sein Kann was Nicht Sein Darf, or the Prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In: Sixty-two years of uncertainty, pp. 61–111. Springer, New York (1990)

    Google Scholar 

  75. 75.

    Howl, R., Vedral, V., Christodoulou, M., Rovelli, C., Naik, D., Iyer, A.: Testing quantum gravity with a single quantum system. Preprint arXiv:2004.01189 (2020)

  76. 76.

    Huggett, N., Callender, C.: Why quantize gravity (or any other field for that matter)? Philos. Sci. S382–S394 (2001)

  77. 77.

    Jacobson, T.: Introductory lectures on black hole thermodynamics. In: Lectures given at the University of Utrecht, The Netherlands (1996). http://www.physics.umd.edu/grt/taj/776b/lectures.pdf

  78. 78.

    Kastner, R.E.: The transactional interpretation of quantum mechanics: the reality of possibility. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  79. 79.

    Kent, A.: Semi-quantum gravity and testing gravitational Bell non-locality. Preprint arXiv:1808.06084 (2018)

  80. 80.

    Kent, A.: Simple refutation of the Eppley-Hannah argument. Class. Quant. Grav. 35(24), 245008 (2018)

    MathSciNet  Article  Google Scholar 

  81. 81.

    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  82. 82.

    Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332(6034), 1170–1173 (2011)

    MATH  Article  Google Scholar 

  83. 83.

    Kolesov, R., Xia, K., Reuter, R., Jamali, M., Stöhr, R., Inal, T., Siyushev, P., Wrachtrup, J.: Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state. Phys. Rev. Lett. 111(12), 120502 (2013)

    Article  Google Scholar 

  84. 84.

    Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14(15), R415 (2002)

    Article  Google Scholar 

  85. 85.

    Leggett, A.J.: Realism and the physical world. Rep. Progr. Phys. 71(2), 022001 (2008)

    MathSciNet  Article  Google Scholar 

  86. 86.

    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54(9), 857–860 (1985)

    MathSciNet  Article  Google Scholar 

  87. 87.

    Lichnerowicz, A., Tonnelat, A.: Les théories relativistes de la gravitation, Number 91 in Colloques Internationaux, Paris. Centre National de la Recherche Scientifique. In: Proceedings of a conference held at Royaumont in June (1959)

  88. 88.

    Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V., Shikano, Y.: Quantum mechanics of time travel through post-selected teleportation. Phys. Rev. D 84(2), 025007 (2011)

    Article  Google Scholar 

  89. 89.

    Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Springer, New York (1992)

  90. 90.

    Marletto, C., Vedral, V.: Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119(24), 240402 (2017)

    Article  Google Scholar 

  91. 91.

    Marletto, C., Vedral, V.: Why we need to quantise everything, including gravity. NPJ Quant. Inf. 3(1), 1–5 (2017)

    Article  Google Scholar 

  92. 92.

    Marletto, C., Vedral, V.: Answers to a few questions regarding the BMV experiment. Preprint arXiv:1907.08994, (2019)

  93. 93.

    Mattingly, J.: Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D 73(6), 064025 (2006)

    MathSciNet  Article  Google Scholar 

  94. 94.

    McTaggart, J.M.E.: The unreality of time. Mind 457–474 (1908)

    MATH  Article  Google Scholar 

  95. 95.

    Minkowski, H.: The fundamental equations for electromagnetic processes in moving bodies. Math. Ann 68, 472–525 (1910)

    MathSciNet  MATH  Article  Google Scholar 

  96. 96.

    Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45(1), 99–124 (1949)

    MathSciNet  MATH  Article  Google Scholar 

  97. 97.

    Myrvold, W.C.: \(\psi \)-ontology result without the Cartesian product assumption. Phys. Rev. A 97(5), 052109 (2018)

    Article  Google Scholar 

  98. 98.

    Page, D.N., Geilker, C.D.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47(14), 979 (1981)

    MathSciNet  Article  Google Scholar 

  99. 99.

    Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14(3), 57–59 (1965)

    MathSciNet  MATH  Article  Google Scholar 

  100. 100.

    Price, H.: Toy models for retrocausality. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P. 39(4), 752–761 (2008)

    MathSciNet  MATH  Google Scholar 

  101. 101.

    Price, H., Wharton, K.: Disentangling the quantum world. Entropy 17(11), 7752–7767 (2015)

    Article  Google Scholar 

  102. 102.

    Przibram, K.:(ed), Klein, M.J. (trans). Letters on Wave Mechanics: Schrödinger, Plank, Einstein, Lorentz. Philosophical Library, New York (1967)

  103. 103.

    Przibram, K.: (ed) , Klein, M.J. (trans). Letters on Wave Mechanics: Correspondence with H.A. Lorentz, Max Planck, and Erwin Schrödinger. Open Road Integrated Media, New York (2011)

  104. 104.

    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8(6), 475–478 (2012)

    Article  Google Scholar 

  105. 105.

    Rietdijk, C.W.: Proof of a retroactive influence. Found. Phys. 8(7–8), 615–628 (1978)

    Article  Google Scholar 

  106. 106.

    Ringbauer, M., Duffus, B., Branciard, C., Cavalcanti, E.G., White, A.G., Fedrizzi, A.: Measurements on the reality of the wavefunction. Nat. Phys. 11(3), 249 (2015)

    Article  Google Scholar 

  107. 107.

    Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  108. 108.

    Rothmayer, M., Tierney, D., Frins, E., Dultz, W., Schmitzer, H.: Irregular spin angular momentum transfer from light to small birefringent particles. Phys. Rev. A 80(4), 043801 (2009)

    Article  Google Scholar 

  109. 109.

    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  110. 110.

    Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 385(13), 437–490 (1926)

    MATH  Article  Google Scholar 

  111. 111.

    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  Google Scholar 

  112. 112.

    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)

    Article  Google Scholar 

  113. 113.

    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23(49), 823–828 (1935)

    MATH  Article  Google Scholar 

  114. 114.

    Schrödinger, E.: Collected papers on wave mechanics, vol. 302. American Mathematical Society, New York (2003)

  115. 115.

    Schulman, L.S.: Definite measurements and deterministic quantum evolution. Phys. Lett. A 102(9), 396–400 (1984)

    MathSciNet  Article  Google Scholar 

  116. 116.

    Schulman, L.S.: Time’s arrows and quantum measurement. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  117. 117.

    Schulman, L.S.: Experimental test of the “Special State” theory of quantum measurement. Entropy 14(4), 665–686 (2012)

    MATH  Article  Google Scholar 

  118. 118.

    Schulman, L.S.: Special states demand a force for the observer. Found. Phys. 46(11), 1471–1494 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  119. 119.

    Schulman, L.S.: Program for the special state theory of quantum measurement. Entropy 19(7), 343 (2017)

    Article  Google Scholar 

  120. 120.

    Schulman, L.S., Da Luz, M.G.E.: Looking for the source of change. Found. Phys. 46(11), 1495–1501 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  121. 121.

    Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)

    MathSciNet  Article  Google Scholar 

  122. 122.

    Stoica, O.C.: Convergence and free-will. PhilSci Archive (2008). philsci-archive:00004356/

  123. 123.

    Stoica, O.C.: Flowing with a frozen river. Foundational Questions Institute, “The nature of time” essay contest (2008). http://fqxi.org/community/forum/topic/322. Accessed 18 May 2020

  124. 124.

    Stoica, O.C.: Smooth quantum mechanics. PhilSci Archive (2008). philsci-archive:00004344/

  125. 125.

    Stoica, O.C.: World theory. PhilSci Archive (2008). philsci-archive:00004355/

  126. 126.

    Stoica, O.C.: Global and local aspects of causality in quantum mechanics. In: EPJ Web of Conferences, TM 2012— the time machine factory (unspeakable, speakable) on time travel in Turin, vol. 58, p. 01017. EPJ Web of Conferences (2013). Open access

  127. 127.

    Stoica, O.C.: Singular general relativity—Ph.D. Thesis. Minkowski Institute Press (2013). arXiv:1301.2231

  128. 128.

    Stoica, O.C.: Einstein equation at singularities. Cent. Eur. J. Phys 12, 123–131 (2014)

    Google Scholar 

  129. 129.

    Stoica, O.C.: Metric dimensional reduction at singularities with implications to quantum gravity. Ann. Phys. 347(C), 74–91 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  130. 130.

    Stoica, O.C.: On singular semi-Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 11(5), 1450041 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  131. 131.

    Stoica, O.C.: The geometry of singularities and the black hole information paradox. J. Phys. Conf. Ser. 626 (012028) (2015)

    Google Scholar 

  132. 132.

    Stoica, O.C.: Quantum measurement and initial conditions. Int. J. Theor. Phys. 1–15 (2015). arXiv:1212.2601

  133. 133.

    Stoica, O.C.: The tao of it and bit. In: It from bit or bit from it? On physics and information, pp. 51–64. Springer, New York (2015). arXiv:1311.0765

    Google Scholar 

  134. 134.

    Stoica, O.C.: On the wavefunction collapse. Quanta 5(1), 19–33 (2016). https://doi.org/10.12743/quanta.v5i1.40

    MathSciNet  Article  Google Scholar 

  135. 135.

    Stoica, O.C.: The universe remembers no wavefunction collapse. Quantum Stud. Math. Found. (2017). arXiv:1607.02076

  136. 136.

    Stoica, O.C.: Revisiting the black hole entropy and the information paradox. AHEP (2018)

  137. 137.

    Stoica, O.C.: Representation of the wave function on the three-dimensional space. Phys. Rev. A 100, 042115 (2019)

    MathSciNet  Article  Google Scholar 

  138. 138.

    Sutherland, R.I.: Causally symmetric Bohm model. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P. 39(4), 782–805 (2008)

    MathSciNet  MATH  Google Scholar 

  139. 139.

    Sutherland, R.I.: How retrocausality helps. In: AIP Conference Proceedings, vol. 1841, p. 020001. AIP Publishing, New York (2017)

  140. 140.

    ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics, vol. 185. Springer, New York (2016)

    Google Scholar 

  141. 141.

    Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2(1), 7–17 (2013)

    MATH  Article  Google Scholar 

  142. 142.

    Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group, New York (2014)

  143. 143.

    Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    MathSciNet  Article  Google Scholar 

  144. 144.

    Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy, spring 2015 edition. Stanford (2015). http://plato.stanford.edu/archives/spr2015/entries/qm-manyworlds/

  145. 145.

    Vaidman, L.: All is \(\psi \). J. Phys. Conf. Ser. 701 (2016)

  146. 146.

    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    Google Scholar 

  147. 147.

    Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    Google Scholar 

  148. 148.

    Wang, Q., Unruh, W.G.: Vacuum fluctuation, micro-cyclic “universes” and the cosmological constant problem. Preprint arXiv:1904.08599 (2019)

  149. 149.

    Wang, Q., Zhu, Z., Unruh, W.G.: How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the universe. Phys. Rev. D 95(10), 103504 (2017)

    MathSciNet  Article  Google Scholar 

  150. 150.

    Weisskopf, V.F., Wigner, E.P.: Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory. Z. Phys. 63, 54–73 (1930)

    Article  Google Scholar 

  151. 151.

    Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46(1–2), 1–46 (1927)

    MATH  Article  Google Scholar 

  152. 152.

    Wharton, K.B.: Time-symmetric quantum mechanics. Found. Phys. 37(1), 159–168 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  153. 153.

    Wharton, K.B., Argaman, N.: Bell’s theorem and spacetime-based reformulations of quantum mechanics. Preprint arXiv:1906.04313, (2019)

  154. 154.

    Wheeler, J.A.: The ’past’ and the ’delayed-choice’ experiment. In: A.R. Marlow (ed) Mathematical Foundations of Quantum Theory, p. 30 (1978)

  155. 155.

    Wheeler, J.A.: Information, physics, quantum: the search for links. In: W.H. Zurek (ed) Complexity, entropy, and the physics of information, vol. 8 (1990)

  156. 156.

    Wheeler, J.A., Ford, K.: Geons, black holes and quantum foam: a life in physics. W.W. Norton & Co., New York (2000)

    Google Scholar 

  157. 157.

    Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 1(40), 149–204 (1939)

    MathSciNet  MATH  Article  Google Scholar 

  158. 158.

    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    MATH  Article  Google Scholar 

  159. 159.

    Wigner, E.P.: Die messung quantenmechanischer operatoren. A Hadrons and nuclei. Z. Phys. 133(1), 101–108 (1952)

    MATH  Article  Google Scholar 

  160. 160.

    Wigner, E.P.: Remarks on the mind-body question. Heinmann, London (1962)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous reviewers whose suggestions helped improving the quality of the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Cristinel Stoica.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoica, O.C. The post-determined block universe. Quantum Stud.: Math. Found. (2020). https://doi.org/10.1007/s40509-020-00228-4

Download citation

Keywords

  • Foundations of quantum mechanics
  • Interpretation of quantum mechanics
  • Block universe
  • Determinism
  • Semi-classical gravity
  • Quantum gravity