Skip to main content

Advertisement

Log in

Antibacterial Alternatives to a Dying Antibiotic Pipeline

  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

This study summarized the current problems and potential solutions related to the rise of multidrug-resistant bacteria, the lack of antibiotics, and new avenues of research in developing new antimicrobial alternatives, such as using bacteriocins, bacteriophage therapy, antimicrobial peptides, and nanoparticles.

Recent findings

Advances in the research of alternative antimicrobial agents in emerging with promising results. These alternative antimicrobials are still developing, and more research is required to bring these products to clinical applications.

Summary

A dramatic increase in the emergence of multidrug-resistant bacteria is challenging the research community to find new antimicrobial agents. Multifactorial events have contributed to this emergence, including the lack of research and development of new antibiotics in pharmaceutical companies, the rise of multidrug-resistant bacteria, and the misuse of antibiotics. Another factor exacerbating this problem is that most pharmaceutical companies have closed their antibiotic discovery pipelines. All these factors contributed to the appearance of more resistant pathogenic bacteria, alarming and burdening the health systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gram HC. Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med. 1884;2:185–9.

    Google Scholar 

  2. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotech. 2017;15:65. A comprehensive analysis of the bacterial mechanism against nanoparticles with antibacterial activity.

    Article  Google Scholar 

  3. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13:620–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Louten J. Virus structure and classification. Essent Hum Virol. 2016;19–29.

  5. Ryan KJ. Pathogenesis of viral infection. Sherris Medical Microbiology, 7e. New York: McGraw-Hill Education; 2017 [cited 2023 May 1]. Available from: accessmedicine.mhmedical.com/content.aspx?aid=1148670820

  6. Kållberg C, Årdal C, Salvesen Blix H, Klein E, M. Martinez E, Lindbæk M, et al. Introduction and geographic availability of new antibiotics approved between 1999 and 2014. Lexchin J, editor. PLoS ONE. 2018;13:e0205166.

  7. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Op Microbiol. 2019;51:72–80.

    Article  CAS  Google Scholar 

  8. Nicolaou KC, Rigol S. A brief history of antibiotics and select advances in their synthesis. J Antibiot. 2018;71:153–84.

    Article  CAS  Google Scholar 

  9. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017 [cited 2023 May 1]; Available from: http://www.cureus.com/articles/7900-a-review-on-antibiotic-resistance-alarm-bells-are-ringing

  10. Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018–2019. Discoveries (Craiova). 7:e102.

  11. Pray L. Antibiotic resistance, mutation rates and MRSA. Nature Education. 2008;1:30.

    Google Scholar 

  12. Kondrashov A. Genetics: the rate of human mutation. Nature. 2012;488:467–8.

    Article  CAS  PubMed  Google Scholar 

  13. Piddock LJV. Understanding drug resistance will improve the treatment of bacterial infections. Nat Rev Microbiol. 2017;15:639–40.

    Article  CAS  PubMed  Google Scholar 

  14. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  15. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119–46. An excellent review explaining the mechanisms of bacterial multidrug resistance.

  16. Read AF, Woods RJ. Antibiotic resistance management. Evol Med Public Health. 2014;2014:147.

    Article  PubMed Central  PubMed  Google Scholar 

  17. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33:e00181–19. An excellent review explaining the mechanisms of bacterial multidrug resistance in the ESKAPE group.

  18. CDC. What exactly is antibiotic resistance? [Internet]. Centers for Disease Control and Prevention. 2022 [cited 2023 May 2]. Available from: https://www.cdc.gov/drugresistance/about.html

  19. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Op Pharmacol. 2014;18:56–60.

    Article  CAS  Google Scholar 

  20. Gross M. Antibiotics in crisis. Curr Biol. 2013;23:R1063–5.

    Article  CAS  PubMed  Google Scholar 

  21. Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122:160–6.

    Article  PubMed Central  PubMed  Google Scholar 

  22. COVID-19: U.S. impact on antimicrobial resistance, special report 2022. Centers for Disease Control and Prevention. 2022. https://stacks.cdc.gov/view/cdc/117915. Accessed 3 May 2023. 

  23. Peleg AY, Hooper DC. Hospital-acquired infections due to Gram-negative bacteria. New Engl J Med. 2010;362:1804–13.

    Article  CAS  PubMed  Google Scholar 

  24. WHO publishes list of bacteria for which new antibiotics are urgently needed. World Health Organization. 2017. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 3 May 2023.

  25. The drug development process. Food and Drug Administration. 2020.  https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process.  Accessed 2 May 2023.

  26. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nature Rev Drug Discov. 2004;3:711–6.

    Article  CAS  Google Scholar 

  27. Mullard A. 2010 FDA drug approvals. Nature Rev Drug Discov. 2011;10:82–5.

    Article  CAS  Google Scholar 

  28. Infectious Diseases Society of America. The 10 × ’20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50:1081–3.

    Article  Google Scholar 

  29. Piddock LJ. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12:249–53. Analysis of the antibiotic crisis and a proposed path to cope with this growing burden.

    Article  PubMed  Google Scholar 

  30. Plackett B. Why big pharma has abandoned antibiotics. Nature. 2020;586:S50–2.

    Article  CAS  Google Scholar 

  31. Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol. 2014;60:147–54.

    Article  CAS  PubMed  Google Scholar 

  32. Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4:185–91. This is a summary about how to provide to the pharmaceutical companies incentives for the development of new antimicrobial agents.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 2014;59:S71–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ventola CL. The antibiotic resistance crisis. Pharm Therap. 2015;40:277–83.

    Google Scholar 

  35. Song CH, Han J-W. Patent cliff and strategic switch: exploring strategic design possibilities in the pharmaceutical industry. SpringerPlus. 2016;5:692. A systematic review analyzing strategic and management approaches on patent expiration. A systematic review analyzing strategic and management approaches on patent expiration.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Frequently asked questions on patents and exclusivity. Food and Drug Administration. 2022. https://www.fda.gov/drugs/development-approval-process-drugs/frequently-asked-questions-patents-and-exclusivity. Accessed 2 May 2023. 

  37. FDA. Generic drugs: questions & answers. Food and Drug Administration. 2021. https://www.fda.gov/drugs/frequently-asked-questions-popular-topics/generic-drugs-questions-answers. Accessed 2 May 2023.

  38. Spink WW, Ferris V. Quantitative action of penicillin inhibitor from penicillin-resistant strains of staphylococci. Science. 1945;102:221–3.

    Article  CAS  PubMed  Google Scholar 

  39. Lyon BR, Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987;51:88–134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis. 1991;163:1279–85.

    Article  CAS  PubMed  Google Scholar 

  41. Wenzel RP. Preoperative antibiotic prophylaxis. N Engl J Med. 1992;326:337–9.

    Article  CAS  PubMed  Google Scholar 

  42. What’s the big deal about antimicrobial resistance? Centers for Disease Control and Prevention. 2023. https://www.cdc.gov/antibiotic-use/antibiotic-resistance.html. Accessed 2 May 2023.

  43. Antibiotics: are you misusing them? Mayo Clinic. 2023. https://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/antibiotics/art-20045720. Accessed 2 May 2023.

  44. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol. 2010;13:589–94.

    Article  CAS  PubMed  Google Scholar 

  46. Antibacterial soap? You can skip it, use plain soap and water. Food and Drug Administration. 2020. https://www.fda.gov/consumers/consumer-updates/antibacterial-soap-you-can-skip-it-use-plain-soap-and-water. Accessed 2 May 2023.

  47. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, et al. Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis. 2016;16:239–51.

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019;27:323–38.

    Article  CAS  PubMed  Google Scholar 

  49. Allen HK. Alternatives to antibiotics: why and how. In: NAM Perspectives. USDA Agricultural Research Service. 2017. https://nam.edu/alternatives-to-antibiotics-why-and-how/. Accessed 3 May 2023. 

  50. Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep. 2020;25:e00427.

    Article  Google Scholar 

  51. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

    Article  CAS  PubMed  Google Scholar 

  52. Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1–20.

    Article  CAS  PubMed  Google Scholar 

  53. Audisio MC, Oliver G, Apella MC. Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J Food Protec. 2000;63:1333–7.

    Article  Google Scholar 

  54. Portrait V, Cottenceau G, Pons AM. A Fusobacterium mortiferum strain produces a bacteriocin-like substance(s) inhibiting Salmonella enteritidis. Lett Appl Microbiol. 2000;31:115–7.

    Article  CAS  PubMed  Google Scholar 

  55. Cotter PD, Ross RP, Hill C. Bacteriocins — a viable alternative to antibiotics? Nature Rev Microbiol. 2013;11:95–105.

    Article  CAS  Google Scholar 

  56. Goldstein BP, Wei J, Greenberg K, Novick R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother. 1998;42:277–8.

    Article  CAS  PubMed  Google Scholar 

  57. Fontana MBC, de Bastos MCF, Brandelli A. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Curr Microbiol. 2006;52:350–3.

    Article  CAS  PubMed  Google Scholar 

  58. Kwaadsteniet MD, Doeschate KT, Dicks LMT. Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol. 2009;48:65–70.

    Article  PubMed  Google Scholar 

  59. Mota-Meira M, Morency H, Lavoie MC. In vivo activity of mutacin B-Ny266. J Antimicrob Chemother. 2005;56:869–71.

    Article  CAS  PubMed  Google Scholar 

  60. Haste NM, Thienphrapa W, Tran DN, Loesgen S, Sun P, Nam S-J, et al. Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. J Antibiot. 2012;65:593–8.

    Article  CAS  Google Scholar 

  61. Singh SB, Occi J, Jayasuriya H, Herath K, Motyl M, Dorso K, et al. Antibacterial evaluations of thiazomycin. J Antibiot. 2007;60:565–71.

    Article  CAS  Google Scholar 

  62. Trzasko A, Leeds JA, Praestgaard J, LaMarche MJ, McKenney D. Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicro Agents Chemot. 2012;56:4459–62.

    Article  CAS  Google Scholar 

  63. Xu L, Farthing AK, Dropinski JF, Meinke PT, McCallum C, Leavitt PS, et al. Nocathiacin analogs: synthesis and antibacterial activity of novel water-soluble amides. Bioorg Med Chem Lett. 2009;19:3531–5.

    Article  CAS  PubMed  Google Scholar 

  64. Lopez FE, Vincent PA, Zenoff AM, Salomón RA, Farías RN. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J Antimicrob Chemother. 2007;59:676–80.

    Article  CAS  PubMed  Google Scholar 

  65. Gänzle MG, Hertel C, van der Vossen JMBM, Hammes WP. Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int J Food Microbiol. 1999;48:21–35.

    Article  PubMed  Google Scholar 

  66. Jalc D, Lauková A. Effect of nisin and monensin on rumen fermentation in the artificial rumen. Berl Munch Tierarztl Wochenschr. 2002;115:6–10.

    CAS  PubMed  Google Scholar 

  67. Bierbaum G, Sahl H-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol. 2009;10:2–18.

    Article  CAS  PubMed  Google Scholar 

  68. Martin NI, Breukink E. Expanding role of lipid II as a target for lantibiotics. Future Microbiol. 2007;2:513–25.

    Article  CAS  PubMed  Google Scholar 

  69. Piper C, Draper LA, Cotter PD, Ross RP, Hill C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother. 2009;64:546–51.

    Article  CAS  PubMed  Google Scholar 

  70. Da Costa RJ, Voloski FLS, Mondadori RG, Duval EH, Fiorentini ÂM. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. J Food Qual. 2019;2019:1–12.

    Article  Google Scholar 

  71. Destoumieux-Garzón D, Peduzzi J, Thomas X, Djediat C, Rebuffat S. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals. 2006;19:181–91.

    Article  PubMed  Google Scholar 

  72. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. PNAS. 2007;104:2384–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Bagley MC, Dale JW, Merritt EA, Xiong X. Thiopeptide antibiotics. Chem Rev. 2005;105:685–714.

    Article  CAS  PubMed  Google Scholar 

  74. Kobayashi Y, Ichioka M, Hirose T, Nagai K, Matsumoto A, Matsui H, et al. Bottromycin derivatives: efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti-VRE activities. Bioorg Med Chem Lett. 2010;20:6116–20.

    Article  CAS  PubMed  Google Scholar 

  75. Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J Biol Chem. 2006;281:18033–42.

    Article  CAS  PubMed  Google Scholar 

  76. Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B, et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor Microcin C. J Bacteriol. 2007;189:8361–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007;89:500–7.

    Article  CAS  PubMed  Google Scholar 

  78. Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 Is a complex phenotype. Appl Environ Microbiol. 1998;64:231–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Mazzotta AS, Crandall AD, Montville TJ. Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl Environ Microbiol. 1997;63:2654–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ming X, Daeschel MA. Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J Food Protect. 1993;56:944–8.

    Article  CAS  Google Scholar 

  81. Carlson SA, Frana TS, Griffith RW. Antibiotic resistance in Salmonella enterica Serovar Typhimurium exposed to microcin-producing Escherichia coli. Appl Environ Microbiol. 2001;67:3763–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mantovani HC, Russell JB. Nisin resistance of Streptococcus bovis. Appl Environ Microbiol. 2001;67:808–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathogen. 2019;128:171–7.

    Article  CAS  Google Scholar 

  84. Collins B, Curtis N, Cotter PD, Hill C, Ross RP. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotic. Antimicrob Agents Chemother. 2010;54:4416–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Baumann S, Schoof S, Bolten M, Haering C, Takagi M, Shin-ya K, et al. Molecular determinants of microbial resistance to thiopeptide antibiotics. J Am Chem Soc. 2010;132:6973–81.

    Article  CAS  PubMed  Google Scholar 

  86. Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, et al. Mutations of bacterial RNA polymerase leading to resistance to Microcin J25. J Biol Chem. 2002;277:50867–75.

    Article  CAS  PubMed  Google Scholar 

  87. del Castillo FJ, del Castillo I, Moreno F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide Microcin B17 and alter the activity of DNA gyrase. J Bacteriol. 2001;183:2137–40.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Rink R, Arkema-Meter A, Baudoin I, Post E, Kuipers A, Nelemans SA, et al. To protect peptide pharmaceuticals against peptidases. J Pharmacol Toxicol Meth. 2010;61:210–8.

    Article  CAS  Google Scholar 

  89. Su P, Henriksson A, Mitchell H. Survival and retention of the probiotic Lactobacillus casei LAFTI® L26 in the gastrointestinal tract of the mouse. Lett Appl Microbiol. 2007;44:120–5.

    Article  CAS  PubMed  Google Scholar 

  90. Su P, Henriksson A, Mitchell H. Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J Appl Microbiol. 2007;103:2392–400.

    Article  CAS  PubMed  Google Scholar 

  91. Hillman JD, Mo J, McDonell E, Cvitkovitch D, Hillman CH. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol. 2007;102:1209–19.

    Article  CAS  PubMed  Google Scholar 

  92. Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenh. 2002;82:361–6.

    Article  CAS  Google Scholar 

  93. Hancock REW, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett. 2002;206:143–9.

    Article  CAS  PubMed  Google Scholar 

  94. Hancock RE. Peptide antibiotics. Lancet. 1997;349:418–22.

    Article  CAS  PubMed  Google Scholar 

  95. Fu H, Björstad Å, Dahlgren C, Bylund J. A bactericidal cecropin-A peptide with a stabilized α-helical structure possess an increased killing capacity but no proinflammatory activity. Inflammation. 2004;28:337–43.

    Article  CAS  PubMed  Google Scholar 

  96. Houston ME, Kondejewski LH, Karunaratne DN, Gough M, Fidai S, Hodges RS, et al. Influence of preformed α-helix and α-helix induction on the activity of cationic antimicrobial peptides. J Pept Res. 1998;52:81–8.

    Article  CAS  PubMed  Google Scholar 

  97. Rozek A, Powers J-PS, Friedrich CL, Hancock REW. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochem. 2003;42:14130–8.

    Article  CAS  Google Scholar 

  98. Uteng M, Hauge HH, Markwick PRL, Fimland G, Mantzilas D, Nissen-Meyer J, et al. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochem. 2003;42:11417–26.

    Article  CAS  Google Scholar 

  99. Zhang Q-Y, Yan Z-B, Meng Y-M, Hong X-Y, Shao G, Ma J-J, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Med Res. 2021;8:48.

    Article  CAS  Google Scholar 

  100. Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosc. 2017;11:73.

    Article  CAS  Google Scholar 

  101. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–50.

    Article  CAS  PubMed  Google Scholar 

  103. Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Comm. 1998;244:253–7.

    Article  CAS  PubMed  Google Scholar 

  104. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989;84:553–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemoth. 2002;46:605–14.

    Article  CAS  Google Scholar 

  106. Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998;160:91–6.

    Article  CAS  PubMed  Google Scholar 

  107. Brötz H, Bierbaum G, Reynolds PE, Sahl H-G. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem. 1997;246:193–9.

    Article  PubMed  Google Scholar 

  108. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochem. 2001;40:3016–26.

    Article  CAS  Google Scholar 

  109. Otvos Laszlo OI, Rogers ME, Consolvo PJ, Condie BA, Lovas S, et al. Interaction between heat shock proteins and antimicrobial peptides. Biochem. 2000;39:14150–9.

    Article  Google Scholar 

  110. Peschel A, Vincent CL. Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides. 2001;22:1651–9.

    Article  CAS  PubMed  Google Scholar 

  111. Robey M, O’Connell W, Cianciotto NP. Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun. 2001;69:4276–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Harwig SSL, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 1994;342:281–5.

    Article  CAS  PubMed  Google Scholar 

  113. Evans EW, Beach FG, Moore KM, Jackwood MW, Glisson JR, Harmon BG. Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet Microbiol. 1995;47:295–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Morassutti C, Amicis FD, Skerlavaj B, Zanetti M, Marchetti S. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 2002;519:141–6.

    Article  CAS  PubMed  Google Scholar 

  115. Zhu M, Hu X, Liu H, Tian J, Yang J, Li L, et al. Antibacterial peptide encapsulation and sustained release from chitosan-based delivery system. Eur Polymer J. 2022;181:111640.

    Article  CAS  Google Scholar 

  116. Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. J Pharm Investig. 2021;51:377–98.

    Article  CAS  Google Scholar 

  117. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–8.

    Article  CAS  PubMed  Google Scholar 

  118. Raveendran P, Fu J, Wallen SL. Completely “Green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125:13940–1.

    Article  CAS  PubMed  Google Scholar 

  119. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, et al. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol. 2009;43:8423–9.

    Article  CAS  PubMed  Google Scholar 

  120. Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed. 2010;6:681–8.

    Article  CAS  Google Scholar 

  121. Pérez-Díaz MA, Boegli L, James G, Velasquillo C, Sánchez-Sánchez R, Martínez-Martínez R-E, et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mat Sci Engin: C. 2015;55:360–6.

    Article  Google Scholar 

  122. McQuillan JS, Infante HG, Stokes E, Shaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicol. 2012;6:857–66.

    Article  CAS  Google Scholar 

  123. Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, et al. Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol. 2013;49:199–206.

    Article  CAS  Google Scholar 

  124. Ramalingam B, Parandhaman T, Das SK. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016;8:4963–76.

    Article  CAS  PubMed  Google Scholar 

  125. Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, et al. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mat Sci Engineer: C. 2014;40:24–31.

    Article  CAS  Google Scholar 

  126. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–86.

    Article  CAS  Google Scholar 

  127. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–7.

    Article  PubMed  Google Scholar 

  128. Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, et al. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem. 2014;135:45–53.

    Article  CAS  PubMed  Google Scholar 

  129. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed. 2007;3:95–101.

    Article  CAS  Google Scholar 

  130. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42:4583–8.

    Article  CAS  PubMed  Google Scholar 

  131. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005;16:2346.

    Article  CAS  Google Scholar 

  132. Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974;20:883–9.

    Article  CAS  PubMed  Google Scholar 

  133. Stabryla LM, Johnston KA, Diemler NA, Cooper VS, Millstone JE, Haig S-J, et al. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat Nanotechnol. 2021;16:996–1003.

    Article  CAS  PubMed  Google Scholar 

  134. Kasman LM, Porter LD. Bacteriophages. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 May 3]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK493185/

  135. Schicklmaier P, Schmieger H. Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl Environ Microbiol. 1995;61:1637–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett. 1999;170:251–6.

    Article  CAS  PubMed  Google Scholar 

  137. Figueroa-Bossi N, Bossi L. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol. 1999;33:167–76.

    Article  CAS  PubMed  Google Scholar 

  138. Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Op Microbiol. 2015;23:171–8.

    Article  Google Scholar 

  139. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, et al. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Protect. 2001;64:1116–21.

    Article  CAS  Google Scholar 

  140. Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 2001;294:2170–2.

    Article  CAS  PubMed  Google Scholar 

  141. Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemoth. 2001;45:649–59.

    Article  CAS  Google Scholar 

  142. Summers WC. Bacteriophage therapy. Ann Rev Microbiol. 2001;55:437–51.

    Article  CAS  Google Scholar 

  143. Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiol. 1982;128:307–18.

    Article  CAS  Google Scholar 

  144. Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiol. 1983;129:2659–75.

    Article  CAS  Google Scholar 

  145. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70:204–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, et al. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemoth. 2003;47:1301–7.

    Article  CAS  Google Scholar 

  147. Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 2020;46:78–99.

    Article  CAS  PubMed  Google Scholar 

  148. Dąbrowska K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev. 2019;39:2000–25.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care. 2009;18:237–43.

    Article  CAS  PubMed  Google Scholar 

  150. Wright A, Hawkins CH, Änggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34:349–57.

    Article  CAS  PubMed  Google Scholar 

  151. Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19:35–45.

    Article  PubMed  Google Scholar 

  152. Domingo-Calap P, Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics. 2018;7:66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics. 2019;8:138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol. 2003;69:5032–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Atterbury RJ, Bergen MAPV, Ortiz F, Lovell MA, Harris JA, Boer AD, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol. 2007;73:4543–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, et al. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci. 2005;84:1141–5.

    Article  CAS  PubMed  Google Scholar 

  157. Egido JE, Costa AR, Aparicio-Maldonado C, Haas P-J, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microb Rev. 2022;9(46):fuab048.

    Article  Google Scholar 

Download references

Acknowledgements

The journal would like to thank Dr. Jillian Raybould for reviewing this manuscript.

Funding

This study was funded by the Antibody Engineering and Proteomics Facility, Immunity and Infection Research Centre, and University of British Columbia, Vancouver, BC, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio Bach PhD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bacterial Infections

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo-Leal, A.C., Bach, H. Antibacterial Alternatives to a Dying Antibiotic Pipeline. Curr Treat Options Infect Dis 15, 61–88 (2023). https://doi.org/10.1007/s40506-023-00267-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-023-00267-6

Keywords

Navigation