Skip to main content

Advertisement

Log in

Bacterial Antibiotic Resistance: on the Cusp of a Post-antibiotic World

  • Neglected Tropical Diseases (A Sanchez, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of review

The specific aim of this article is to provide evidence that antibiotic resistance (AR) has become a human disease unto itself and to describe the current means of preventing, treating, and reversing AR in individuals and in affected populations.

Recent findings

An ever-increasing number of infections are being classified as multidrug resistant (MDR). Low and middle-income countries are most likely to increase the spread of AR due to limited healthcare infrastructure coupled with policies that promote unregulated access to antibiotics. The genetic basis for AR has become more thoroughly understood as efforts move toward a global big data approach to surveille and implement effective public health measures.

Summary

Antibiotic Stewardship (AS) programs are critical to prevent the spread of AR. As resistant pathogens reside in patients for many years after they are initially integrated into the microbiome, the potential for future infection increases substantially. This property contributes to the conclusion that AR is in and of itself a human disease that must be treated appropriately. While all bacteria are at risk to become AR, Staphylococcus, Klebsiella, Mycobacterium, Acinetobacter, and Pseudomonas represent the greatest challenges in infectious disease treatment as rapid AR acquisition leads to MDR infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bushake L, A Brief History of antibiotic resistance [Internet]. Medical Daily. 2018 [cited 2 June 2018]. Available from: https://www.medicaldaily.com/antibiotic-resistance-history-373773. Accessed 2 Jun 2018.

  2. Khan F, Arthur J, Maidment L, Blue D. Advancing antimicrobial stewardship: summary of the 2015 CIDSC report. Can Commun Dis Rep. 2016;42(11):238–41. https://doi.org/10.14745/ccdr.v42i11a04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antibiotic Stewardship | Antibiotic/antimicrobial resistance | CDC [Internet]. Cdc.gov. 2018 [cited 15 June 2018]. Available from: https://www.cdc.gov/drugresistance/solutions-initiative/antibiotic-stewardship.html. Accessed 15 Jun 2018.

  4. Hughes D, Andersson D. Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr Opin Microbiol. 2012;15(5):555–60. https://doi.org/10.1016/j.mib.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  5. Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect. 2009;15:12–5. https://doi.org/10.1111/j.1469-0691.2009.02725.x.

    Article  CAS  PubMed  Google Scholar 

  6. Balcazar J. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 2014;10(7):e1004219. https://doi.org/10.1371/journal.ppat.1004219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karp G, Iwasa J, Marshall W. Cell and Molecular Biology. Hoboken, NJ: John Wiley & Sons, Inc.; 2015.

    Google Scholar 

  8. Toleman M, Bennett P, Walsh T. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296–316. https://doi.org/10.1128/MMBR.00048-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T. Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infec. 2002;50(2):110–4. https://doi.org/10.1053/jhin.2001.1127.

    Article  CAS  Google Scholar 

  10. Kumar A, Randhawa V, Nirupam N, Rai Y, Saili A. Risk factors for carbapenem-resistant Acinetobacter baumanii blood stream infections in a neonatal intensive care unit, Delhi, India. J Infec in Dev Ctries. 2014;8(08):1049–54. https://doi.org/10.3855/jidc.4248.

    Article  Google Scholar 

  11. Gozutok F, Mutlu Sariguzel F, Celik I, Berk E, Aydin B, Guzel D. Investigation of antimicrobial resistance rates of Acinetobacter baumannii strains from nosocomial infections. Ankem Derg. 2013;27(1):7–12. https://doi.org/10.5222/ankem.2013.007.

    Article  Google Scholar 

  12. Kireçcí E, Kireçcí M, Aksu M. Investigation of the antibiotic susceptibility of Acinetobacter baumannii strains isolated from clinical samples. Türk Mikrobiol Cemiy Derg. 2015;13(4):266–70.

    Google Scholar 

  13. Khajuria A. Molecular characterization of carbapenem resistant isolates of Acinetobacter baumannii in an intensive care unit of a tertiary care centre at Central India. J Clin Diagn Res. 2014;8(5):DC38–40. https://doi.org/10.7860/JCDR/2014/7749.4398.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang H, Wang J, Yu P, Ge P, Jiang Y, Xu R, et al. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. Int J Mol Med. 2016;39(2):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buyuk A, Yilmaz F, Gul Yurtsever S, Hosgor Limoncu M. Antibiotic resistance profiles and genotypes of Acinetobacter baumannii isolates and in vitro interactions of various antibiotics in combination with tigecycline and colistin. Turk J Pharma Sci. 2017;14(1):13–8. https://doi.org/10.4274/tjps.44127.

    Article  CAS  Google Scholar 

  16. Khyriem A, Lyngdoh W, Banik A, Choudhury B, Bhattacharyya P, Gurung J. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J of Crit Care Med. 2013;17(4):214–8. https://doi.org/10.4103/0972-5229.118416.

    Article  CAS  Google Scholar 

  17. Nunez M, Simarro E, Martinez-Campos L, Ruiz J, Gomez J, Perez J. Evolution of resistance among clinical isolates of Acinetobacter over a 6-year period. Eur J Clin Microbiol Infect Dis. 1999;18(4):292–5. https://doi.org/10.1007/s100960050280.

    Article  PubMed  Google Scholar 

  18. Luo Y, Wang Y, Ye L, Yang J. Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin Microbiol Infect. 2014;20(11):O818–24. https://doi.org/10.1111/1469-0691.12664.

    Article  CAS  PubMed  Google Scholar 

  19. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Revs. 2017;41(3):252–75.

    Article  CAS  Google Scholar 

  20. Kidd T, Mills G, Sá-Pessoa J, Dumigan A, Frank C, Insua J, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Molecular Medicine. 2017;9:430–47. https://doi.org/10.15252/emmm.201607336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Padmini N, Ajilda A, Sivakumar N, Selvakumar G. Extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae: critical tools for antibiotic resistance pattern. J Basic Microbiol. 2017;57(6):460–70. https://doi.org/10.1002/jobm.201700008.

    Article  CAS  PubMed  Google Scholar 

  22. Sahu M, Siddharth B, Choudhury A, Vishnubhatla S, Singh S, Menon R, et al. Incidence, microbiological profile of nosocomial infections, and their antibiotic resistance patterns in a high volume cardiac surgical intensive care unit. Ann Card Anaesth. 2016;19(2):281–7. https://doi.org/10.4103/0971-9784.179625.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Summary of the latest data on antibiotic resistance in the European Union [Internet]. European Union; 2018 p. 1–8. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Documents/antibiotic-resistance-in-EU-summary.pdf. Accessed 30 Jun 2018.

  24. Ruh E, Gazi U, Güvenir M, Süer K, Çakır N. Antibiotic resistance rates of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae isolated from a university-affiliated hospital in North Cyprus. Turk Bull Hyg Exper Biol. 2016;73(4):333–44. https://doi.org/10.5505/TurkHijyen.2016.82653.

    Article  Google Scholar 

  25. Ullah W, Qasim M, Rahman H, Jie Y, Muhammad N. Beta-lactamase-producing Pseudomonas aeruginosa: phenotypic characteristics and molecular identification of virulence genes. J Chin Med Assoc. 2017;80(3):173–7. https://doi.org/10.1016/j.jcma.2016.08.011.

    Article  PubMed  Google Scholar 

  26. Feng Y, Hodiamont C, van Hest R, Brul S, Schultsz C, ter Kuile B. Development of antibiotic resistance during simulated treatment of Pseudomonas aeruginosa in chemostats. PLoS One. 2016;11(2):e0149310. https://doi.org/10.1371/journal.pone.0149310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swetha C, Babu A, Rao K, Bharathy S, Supriya R, Rao T. A study on the antimicrobial resistant patterns of Pseudomonas Aeruginosa isolated from raw milk samples in and around Tirupati, Andhra Pradesh. Asian J Dairy and Food Res. 2017;36(02):100–5. https://doi.org/10.18805/ajdfr.v36i02.7951.

  28. Antimicrobial resistance: global report on surveillance [internet]. WHO; 2014. Available from: http://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=674CF15427C38E6822B8A0BAF121ED71?sequence=1. Accessed 30 Jun 2018.

  29. Cheraghi S, Pourgholi L, Shafaati M, Fesharaki S, Jalali A, Nosrati R, et al. Analysis of virulence genes and accessory gene regulator (agr) types among methicillin-resistant Staphylococcus aureus strains in Iran. J of Glob Antimicrob Resist. 2017;10:315–20. https://doi.org/10.1016/j.jgar.2017.06.009.

    Article  Google Scholar 

  30. Gostev V, Kruglov A, Kalinogorskaya O, Dmitrenko O, Khokhlova O, Yamamoto T, et al. Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infect Genet Evol. 2017;53:189–94. https://doi.org/10.1016/j.meegid.2017.06.006.

    Article  CAS  PubMed  Google Scholar 

  31. Ontario Agency for Health Protection and Promotion (Public Health Ontario), Provincial Infectious Diseases Advisory Committee. Infection prevention and control for clinical office practice. 1st revision ed. Toronto, ON: Queen’s Printer for Ontario; 2015.

    Google Scholar 

  32. Hawn T, Shah J, Kalman D. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immuno Revs. 2015;264(1):344–62.

    Article  CAS  Google Scholar 

  33. Fonseca J, Knight G, McHugh T. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Intl J of Infec Dis. 2015;32:94–100.

    Article  CAS  Google Scholar 

  34. Liu F, Hu Y, Wang Q, Li H, Gao G, Liu C, et al. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genomics. 2014;15(1):469. https://doi.org/10.1186/1471-2164-15-469.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol. 2016;90(7):1585–604. https://doi.org/10.1007/s00204-016-1727-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gandhi N, Moll A, Sturm A, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368(9547):1575–80. https://doi.org/10.1016/S0140-6736(06)69573-1.

    Article  PubMed  Google Scholar 

  37. O’Donnell M, Padayatchi N, Kvasnovsky C, Werner L, Master I, Horsburgh C. Treatment outcomes for extensively drug-resistant tuberculosis and HIV co-infection. Emerg Infect Dis. 2013;19(3):416–24. https://doi.org/10.3201/eid1903.120998.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iem V, Somphavong S, Buisson Y, Steenkeste N, Breysse F, Chomarat M, et al. Resistance of Mycobacterium tuberculosis to antibiotics in Lao PDR: first multicentric study conducted in 3 hospitals. BMC Infect Dis. 2013;13(1):275. https://doi.org/10.1186/1471-2334-13-275.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shoji H, Maeda M, Shirakura T, Takuma T, Ugajin K, Fukuchi K, et al. More accurate measurement of vancomycin minimum inhibitory concentration indicates poor outcomes in meticillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents. 2015;46(5):532–7.

    Article  CAS  PubMed  Google Scholar 

  40. Matar M, Moghnieh R, Alothman A, Althaqafi A, Alenazi T, Farahat F, et al. Treatment patterns, resource utilization, and outcomes among hospitalized patients with methicillin-resistant Staphylococcus aureus complicated skin and soft tissue infections in Lebanon and Saudi Arabia. Infec and Drug Resist. 2017;10:43–8. https://doi.org/10.2147/IDR.S97415.

    Article  Google Scholar 

  41. Menzin J, Marton J, Meyers J, Carson R, Rothermel C, Friedman M. Inpatient treatment patterns, outcomes, and costs of skin and skin structure infections because of Staphylococcus aureus. Am J Infec Cntl. 2010;38:44–9.

    Article  Google Scholar 

  42. Blake D, Hillman K, Fenlon D, Low J. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. J Appl Microbiol. 2003;95:428–36. https://doi.org/10.1046/j.1365-2672.2003.01988.x.

    Article  CAS  PubMed  Google Scholar 

  43. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. PNAC. 1999;96:1152–6.

    Article  CAS  Google Scholar 

  44. Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 2000;44:1771–7. https://doi.org/10.1128/AAC.44.7.1771-1777.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bebell LM, Muiru AN. Antibiotic use and emerging resistance. Glob Heart. 2014;9:347–58. https://doi.org/10.1016/j.gheart.2014.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Theuretzbacher U. Global antibacterial resistance: the never-ending story. J of Glob Antimicrob Resist. 2013;1:63–9. https://doi.org/10.1016/j.jgar.2013.03.010.

    Article  Google Scholar 

  47. Pugliese G, Favero MS. Airplane cabin air recirculation and risk of upper respiratory tract infection. Infect Control Hosp Epidemiol. 2002;23:554. https://doi.org/10.1017/S0195941700081297.

    Article  Google Scholar 

  48. Leung E, Weil DE, Raviglione M, Nakatani H. The WHO policy package to combat antimicrobial resistance. Bull World Health Organ. 2011;89:390–2. https://doi.org/10.2471/BLT.11.088435.

    Article  PubMed  PubMed Central  Google Scholar 

  49. FACT SHEET. Obama administration releases National Action Plan to combat antibiotic- resistant bacteria. Washington D.C.: the white house; 2017.

    Google Scholar 

  50. Schürch AC, Schaik WV. Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann N Y Acad Sci. 2017;1388:108–20. https://doi.org/10.1111/nyas.13310.

    Article  CAS  PubMed  Google Scholar 

  51. Le T-T, Nadimpalli M, Wu J, Heaney CD, Stewart JR. Challenges in estimating characteristics of Staphylococcus aureus nasal carriage among humans enrolled in surveillance studies. Front Public Health. 2018;6:163.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kimura T, Uda A, Sakaue T, Yamashita K, Nishioka T, Nishimura S, et al. Long-term efficacy of comprehensive multidisciplinary antibiotic stewardship programs centered on weekly prospective audit and feedback. Infection. 2017;46:215–24.

    Article  PubMed  Google Scholar 

  53. Liu L, Liu B, Li Y, Zhang W. Successful control of resistance in Pseudomonas aeruginosa using antibiotic stewardship and infection control programs at a Chinese university hospital: a 6-year prospective study. Infec & Drug Resist. 2018;Volume 11:637–46. https://doi.org/10.2147/IDR.S163853.

    Article  Google Scholar 

  54. Murni IK, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: an effectiveness study. Arch Dis Child. 2014;100:454–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lawes T, Lopez-Lozano J-M, Nebot CA, Macartney G, Subbarao-Sharma R, Dare CR, et al. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. Lancet Infect Dis. 2015;15:1438–49. https://doi.org/10.1016/S1473-3099(15)00315-1.

    Article  Google Scholar 

  56. Boyles TH, Naicker V, Rawoot N, Raubenheimer PJ, Eick B, Mendelson M. Sustained reduction in antibiotic consumption in a South African public sector hospital; four year outcomes from the Groote Schuur Hospital antibiotic stewardship program. South African Med J. 2017;107:115–8. https://doi.org/10.7196/SAMJ.2017.v107i2.12067.

    Article  CAS  Google Scholar 

  57. Inácio J, Barnes L-M, Jeffs S, Castanheira P, Wiseman M, Inácio S, et al. Master of pharmacy students’ knowledge and awareness of antibiotic use, resistance and stewardship. Curr in Pharm Teach & Learn. 2017;9:551–9. https://doi.org/10.1016/j.cptl.2017.03.021.

    Article  Google Scholar 

  58. Minen MT, Duquaine D, Marx MA, Weiss D. A survey of knowledge, attitudes, and beliefs of medical students concerning antimicrobial use and resistance. Microb Drug Resist. 2010;16:285–9. https://doi.org/10.1089/mdr.2010.0009.

    Article  PubMed  Google Scholar 

  59. Garau J, Nicolau DP, Wullt B, Bassetti M. Antibiotic stewardship challenges in the management of community-acquired infections for prevention of escalating antibiotic resistance. J of Glob Antimicrob Resist. 2014;2:245–53. https://doi.org/10.1016/j.jgar.2014.08.002.

    Article  Google Scholar 

  60. Butt AA, Navasero CS, Thomas B, Marri SA, Katheeri HA, Thani AA, et al. Antibiotic prescription patterns for upper respiratory tract infections in the outpatient Qatari population in the private sector. Intl J Infec Dis. 2017;55:20–3.

    Article  Google Scholar 

  61. • Pitiriga V, Vrioni G, Saroglou G, Tsakris A. The impact of antibiotic stewardship programs in combating quinolone resistance: a systematic review and recommendations for more efficient interventions. Adv Ther. 2017;34:854–65. https://doi.org/10.1007/s12325-017-0514-y This study demonstrates the health and economic benefits seen by hospitals implementing antibiotic stewardship programs in a thorough systematic review, as well as offering ideas to improve on techniques being used today.

    Article  PubMed  Google Scholar 

  62. Tartari E, Pires D, Pittet D. Clean your hands 5th May 2017: fight antibiotic resistance - its in your hands. Antimicrob Resist Infec Cntrl. 2017;45(4):342.

    Google Scholar 

  63. Lushniak BD. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129:314–6. https://doi.org/10.1177/003335491412900402.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Peterson LE, et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J of Infec. 2014;69:216–25. https://doi.org/10.1016/j.jinf.2014.05.005.

    Article  Google Scholar 

  65. Okeke IN, Peeling RW, Goossens H, Auckenthaler R, Olmsted SS, de Lavison JF, et al. Diagnostics as essential tools for containing antibacterial resistance. Drug Resist Updat. 2011;14:95–106. https://doi.org/10.1016/j.drup.2011.02.002.

    Article  PubMed  Google Scholar 

  66. Niwa T, Watanabe T, Suzuki K, Hayashi H, Ohta H, Nakayama A, et al. Early optimization of antimicrobial therapy improves clinical outcomes of patients administered agents targeting methicillin-resistant Staphylococcus aureus. J Clin Pharm Ther. 2015;41:19–25.

    Article  CAS  PubMed  Google Scholar 

  67. Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30:401–7. https://doi.org/10.1016/j.tig.2014.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reddy PN, Srirama K, Dirisala VR. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infec Dis: Res and Treat. 2017;10:117991611770399.

    Google Scholar 

  69. Peeling RW, Boeras DI, Nkengasong J. Re-imagining the future of diagnosis of neglected tropical diseases. Compu and Struct Biotech J. 2017;15:271–4. https://doi.org/10.1016/j.csbj.2017.02.003.

    Article  Google Scholar 

  70. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969–76. https://doi.org/10.1128/AAC.01009-09.

    Article  CAS  Google Scholar 

  71. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D443–7. https://doi.org/10.1093/nar/gkn656.

    Article  CAS  PubMed  Google Scholar 

  72. •• Mcarthur AG, Wright GD. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Op Microbiol. 2015;27:45–50. This study outlines a feasible framework for implementing global data collection as a tool for surveillance and diagnostic capacity of antibiotic resistance in new infections. https://doi.org/10.1016/j.mib.2015.07.004.

    Article  Google Scholar 

  73. Mourad R, Sinoquet C, Leray P. Probabilistic graphical models for genetic association studies. Briefings in Bioinf. 2011;13:20–33.

    Article  Google Scholar 

  74. Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010;44:25–51. https://doi.org/10.1146/annurev-genet-102209-163517.

    Article  CAS  PubMed  Google Scholar 

  75. Illumina. Personal correspondence - MiniSeq sequencer small affordable benchtop sequencer. 2017. https://www.illumina.com/systems/sequencing-platforms/miniseq.html. Accessed 16 Jan 2019.

  76. Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem. 2014;61:145–53.

    Article  PubMed  Google Scholar 

  77. Tanner NA, Zhang Y, Evans TC. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques. 2015;58:59–68. https://doi.org/10.2144/000114253.

    Article  CAS  PubMed  Google Scholar 

  78. Hu C, Kalsi S, Zeimpekis I, Sun K, Ashburn P, Turner C, et al. Ultra-fast electronic detection of antimicrobial resistance genes using isothermal amplification and thin film transistor sensors. Biosens Bioelectron. 2017;96:281–7. https://doi.org/10.1016/j.bios.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  79. Credo GM, Su X, Wu K, Elibol OH, Liu DJ, Reddy B, et al. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Analyst. 2012;137:1351–62. https://doi.org/10.1039/c2an15930a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, et al. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;7:1515. https://doi.org/10.3389/fmicb.2016.01515.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803. https://doi.org/10.1128/AEM.00426-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Antimicrob Resist. 2014;1:1–14.

    Google Scholar 

  83. Gomes ALC, Galagan JE, Segrè D. Resource competition may lead to effective treatment of antibiotic resistant infections. PLoS One. 2013;8:e80775. https://doi.org/10.1371/journal.pone.0080775.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Palmer AC, Angelino E, Kishony R. Erratum: corrigendum: chemical decay of an antibiotic inverts selection for resistance. Nat Chem Biol. 2010;6:244–9. https://doi.org/10.1038/nchembio0310-244a.

    Article  CAS  PubMed  Google Scholar 

  85. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: An Individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9(8):e10001300. https://doi.org/10.1371/lornal.pmed.10001300.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolynn E. Pietrangeli Ph.D..

Ethics declarations

Conflict of interest

Kameron Sprigg declares that there are no competing interests.

Carolynn E. Pietrangeli declares that there are no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neglected Tropical Diseases

Electronic supplementary material

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprigg, K., Pietrangeli, C.E. Bacterial Antibiotic Resistance: on the Cusp of a Post-antibiotic World. Curr Treat Options Infect Dis 11, 42–57 (2019). https://doi.org/10.1007/s40506-019-0181-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-019-0181-4

Keywords

Navigation