Advertisement

On a class of smooth preferences

  • Andrea Attar
  • Thomas Mariotti
  • François Salanié
Research Article
  • 23 Downloads

Abstract

We construct a complete space of smooth strictly convex preferences defined over commodities and monetary transfers. Our model extends the classical one in that preferences are strictly monotone in monetary transfers, but need not be monotone in all commodities. We thereby provide a natural framework for performing genericity analyses in situations involving inventory costs or decisions under risk. The constructed space of preferences is contractible, which allows for a natural aggregation procedure in collective decision situations.

Keywords

Smooth preferences Nonmonotonicity Collective choice 

JEL Classification

C60 D11 

References

  1. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)Google Scholar
  2. Baigent, N.: Topological theories of social choice. In: Arrow, K., Sen, A., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, pp. 301–334. Elsevier, Amsterdam (2011)Google Scholar
  3. Becker, G.S.: Altruism in the family and selfishness in the market place. Economica 48(189), 1–15 (1981)CrossRefGoogle Scholar
  4. Chiappori, P.-A.: Rational household labor supply. Econometrica 56(1), 63–90 (1988)CrossRefGoogle Scholar
  5. Chiappori, P.-A.: Collective labor supply and welfare. J. Political Econ. 100(3), 437–467 (1992)CrossRefGoogle Scholar
  6. Chichilnisky, G.: Social choice and the topology of spaces of preferences. Adv. Math. 37(2), 165–176 (1980)CrossRefGoogle Scholar
  7. Chichilnisky, G., Heal, G.: Necessary and sufficient conditions for a resolution of the social choice paradox. J. Econ. Theory 31(1), 68–87 (1983)CrossRefGoogle Scholar
  8. Debreu, G.: Smooth preferences. Econometrica 40(4), 603–615 (1972)CrossRefGoogle Scholar
  9. Horvath, C.D.: On the topological social choice problem. Soc Choice Welf 18(2), 227–250 (2001)CrossRefGoogle Scholar
  10. Kannai, Y.: Continuity properties of the core of a market. Econometrica 38(6), 791–815 (1970)CrossRefGoogle Scholar
  11. Klee Jr., V.L.: Convex bodies and periodic homeomorphisms in Hilbert space. Trans. Am. Math. Soc. 74(1), 10–43 (1953)CrossRefGoogle Scholar
  12. Lauwers, L.: Topological social choice. Math. Soc. Sci. 40(1), 1–39 (2000)CrossRefGoogle Scholar
  13. Lauwers, L.: The topological approach to the aggregation of preferences. Soc. Choice Welf. 33(3), 449–476 (2009)CrossRefGoogle Scholar
  14. Mas-Colell, A.: The Theory of General Economic Equilibrium: A Differentiable Approach. Cambridge University Press, Cambridge (1985)Google Scholar
  15. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  16. Polemarchakis, H.M., Siconolfi, P.: Competitive equilibria without free disposal or nonsatiation. J. Math. Econ. 22(1), 85–99 (1993)CrossRefGoogle Scholar
  17. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)Google Scholar
  18. Varian, H.R.: Microeconomic Analysis, 3rd edn. W.W. Norton & Company Inc., New York (1992)Google Scholar
  19. Wold, H., Juréen, L.: Demand Analysis: A Study in Econometrics. Wiley, New York (1953)Google Scholar

Copyright information

© Society for the Advancement of Economic Theory 2018

Authors and Affiliations

  1. 1.Toulouse School of EconomicsCNRS, University of Toulouse CapitoleToulouseFrance
  2. 2.Università degli Studi di Roma “Tor Vergata”RomeItaly
  3. 3.Toulouse School of EconomicsINRA, University of Toulouse CapitoleToulouseFrance

Personalised recommendations