Foliage applied potassium improves stay green, photosynthesis and yield of maize (Zea mays L.) under rainfed condition

Abstract

In rainfed agriculture, the optimum use of fertilizers could not be achieved due to moisture constraint. In such areas where agriculture is rainfall dependent, foliar application of nutrients is better option to optimize crop yield. Therefore, the present study was conducted to check the performance of maize varieties and assess the effect of foliage applied potassium (K) on the photosynthetic activity, stay green, grain yield and related attributes of maize under rainfed condition. Current study was carried out with the objective to find best adopted variety and K rate for increasing photosynthetic activity and grain yield in maize. The results showed that, foliar application of K (2%) improved stomatal conductance, photosynthetic rate and chlorophyll contents in maize variety Islamabad gold. It also improved grain size and 1000-grain weight which leads to 10% higher grain yield compared with control. However foliar application of 2% K as well as maize variety Islamabad gold should be further investigated under rainfed condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abid, A., Hussain, M., Habib, H. S., Kiani, T. T., Anees, M. A., & Rahman, M. A. (2016). Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turkish Journal of Field Crops, 21, 36–43.

    Google Scholar 

  2. Ahmad, N., & Rashid, M. (2003). Fertilizers and their use in Pakistan (p. 112). Islamabad: Extension Bulletin. NDFC.

    Google Scholar 

  3. Amanullah, H. M. (2015). Difference in dry matter accumulation with variable rates of sulphur and potassium application under calcareous soils in Brassica napus vs. B juncea. Journal of Oilseed Brassica, 6, 241–248.

    Google Scholar 

  4. Amanullah Kakar, K. M., & Khan, A. (2014). Growth and yield response of maize (Zea mays L.) to foliar NPK-fertilizers under moisture stress condition. Soil and Environment, 33, 116–123.

    Google Scholar 

  5. Amanullah Khalid, S. (2016). Integrated use of phosphorus, animal manures and bio fertilizers improve maize productivity under semiarid condition. In: Marcelo, L., Larramendy, Soloneski, S. (ed.) Organic Fertilizers-From Basic Concepts to Applied Outcomes. In Tech. 137–155.

  6. Arquero, O., Barranco, D., & Benlloch, M. (2006). Potassium starvation increases stomatal conductance in olive trees. Horticultural Science., 41, 433–436.

    CAS  Google Scholar 

  7. Battie-Laclau, P., Laclau, J. P., Piccolo, M. C., Arenque, B. C., Beri, C., Mietton, L., et al. (2013). Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant and Soil, 371, 19–35.

    CAS  Article  Google Scholar 

  8. Bednarz, C. W., Oosterhuis, D. M., & Evans, R. D. (1998). Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environmental and Experimental Botany, 39(2), 131–139.

    CAS  Article  Google Scholar 

  9. Benlloch-Gonza’lez, M., Arquero, O., & Fournier, J. M. (2008). K starvation inhibits water-stress-induced stomatal closure. Journal of Plant Physiology, 165, 623–630.

    Article  Google Scholar 

  10. Chang, M. A., Oosterhuis, D. M. (1995). Effect of foliar application to cotton of potassium compounds at different pH levels. P 1364–1366. In: (Ed.): D.A. Richter. Proc. Beltwide cotton Conf., San Antonio. TX. 4–7 Natl. Cotton Council of America, Memphis, TN.

  11. Cochrane, T. T., & Cochrane, T. A. (2009). Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation. Plant Physiology and Biochemistry, 47, 205–209.

    CAS  Article  Google Scholar 

  12. Coker, D. L., Oosterhuis, D. M., Brown, R. S. (2000). Potassium Partitioning in the Cotton Plant as Influenced by Soil and Foliar Potassium Fertilization under Water Deficit Stress. In: Oosterhuis, D.M.: Summaries of Arkansas Cotton Research. Arkansas Agricultural Experiment Station, Fayetteville AR (pp 81–88)

  13. Eichert, T., & Fernández, V. (2012). Uptake and release of elements by leaves and other aerial plant parts. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants (pp. 71–84). London: Academic Press.

    Google Scholar 

  14. Farooqi, M. Q. U., Ahmad, R., Wariach, E. A., & Arfan, M. (2012). Effect of supplemental foliar applied potassium on yield and grain quality of autumn planted maize (Zea mays L.) under water stress. Journal of Food Agriculture and Veterinary Sciences, 2, 8–12.

    Google Scholar 

  15. Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in Plant Sciences, 4, 289.

    Google Scholar 

  16. Food and Agricultural Organization. (2010). The state of food in security in the world. Undernourishment around the world. pp. 8–10.

  17. Fusheing, L. (2006). Potassium and water interaction. International workshop on soil potassium and K fertilizer management. Agriculture Guangxi University, Guangxi 1–32.

  18. Girma, K., Martin, K. L., Freeman, K. W., Mosali, J., Teal, R. K., Raun, W. R., et al. (2007). Determination of optimum rate and growth for foliar applied phosphorus in corn. Communications in Soil Science and Plant Analysis, 38, 1137–1154.

    CAS  Article  Google Scholar 

  19. Grzebisz, W., Wronska, M., Diatta, J. B., & Dullin, P. (2008). Effect of zinc foliar application at early stages of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Journal of Elementology, 13, 17–22.

    Google Scholar 

  20. Hasanuzzaman, M., Bhuyan, M. H. M., Nahar, K., Hossain, M., Mahmud, J. A., Hossen, M., & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8, 31.

    Article  Google Scholar 

  21. Iqbal, A., Amanullah, A., & Iqbal, M. (2015). Impact of potassium rates and their application time on dry matter partitioning, biomass and harvest index of maize (Zea mays L.) with and without cattle dung application. Emirates Journal of Food and Agriculture, 27, 447–453.

    Article  Google Scholar 

  22. Ling, F., & Silberbush, M. (2002). Response of maize to foliar vs. soil application of nitrogen–phosphorus–potassium fertilizers. Journal of plant nutrition, 25, 2333–2342.

    CAS  Article  Google Scholar 

  23. Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393–2401.

    CAS  Article  Google Scholar 

  24. Marschner, H. (1995). Mineral Nutrition of Higher Plants (p. 651). London. p: Academic Press Inc.

    Google Scholar 

  25. Marschner, H., & Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants. London, UK: Elsevier.

    Google Scholar 

  26. Martineau, E., Domec, J. C., & Bosc, A. (2017). The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environmental and Experimental Botany, 134, 62–71.

    CAS  Article  Google Scholar 

  27. Mengel, K., & Kirkby, E. A. (2001). Principles of Plant Nutrition (p. 833). The Netherlands. p: Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  28. Oosterhuis, D. M., Loka, D. A., & Raper, T. B. (2013). Potassium and stress alleviation: Physiological functions and management of cotton. Journal of Plant Nutrition and Soil Science, 176, 31–343.

    Article  Google Scholar 

  29. Pettigrew, W. T. (2003). Relationships between insufficient potassium and crop maturity in cotton. Agronomy Journal, 95, 1323–1329.

    Article  Google Scholar 

  30. Pettigrew, W. T. (2008). Potassium influence on yield and quality production for maize, wheat, soybean and cotton. Physiolgia Plantarum, 133, 670–681.

    CAS  Article  Google Scholar 

  31. Pettigrew, W. T., & Meredith, W. R. (1997). Dry Matter Production, Nutrient Uptake, and Growth of Cotton as Affected by Potassium Fertilization. Journal of Plant Nutrition, 20, 531–548.

    CAS  Article  Google Scholar 

  32. Provez, K., Memon, M. Y., Imtiaz, M., & Aslam, M. (2009). Response of wheat to foliar and soil application of urea at different growth stages. Pakistan Journal of Botany, 41, 197–204.

    Google Scholar 

  33. Romheld, V. (1999). Foliar nutrient application: challenge and limits in crop production. In Proc. of the 2nd International Workshop on Foliar Fertilization, April 4–10, 1999. Bangkok, Thailand (pp. 1–34).

  34. Römheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: needs and prospects. Plant and Soil, 335, 155–180.

    Article  Google Scholar 

  35. Sangakkara, U. R., Frehner, M., & Nosberger, J. (2000). Effect of Soil Moisture and Potassium Fertilizer on Shoot Water Potential, Photosynthesis and Partitioning of Carbon in Mungbean and Cowpea. Journal of Agronomy and Crop Science, 185, 201–207.

    CAS  Article  Google Scholar 

  36. Shahzad, A. N., Fatima, A., Sarwar, N., Bashir, S., Rizwan, M., Qayyum, M. F., et al. (2017). Foliar application of potassium sulfate partially alleviates pre-anthesis drought-onduced kernel abortion in maize. International Journal of Agriculture and Biology, 19, 495–501.

    CAS  Article  Google Scholar 

  37. Statistix, S. (2003). 8.1 Tallahassee. Orlando FL USA: Analytical Software.

    Google Scholar 

  38. Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and Procedures of Statistics A biometrical approach (pp. 400–428). New York, USA: McGraw Hill Book Co.

    Google Scholar 

  39. Umar, S. (2006). Alleviating adverse effects of water stress on yield of sorghum, mustard and groundnut by potassium application. Pakistan Journal of Botany, 38, 1373–1380.

    Google Scholar 

  40. Warriach, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants. Journal of Soil Science and Plant Nutrition, 12, 221–244.

    Article  Google Scholar 

  41. Xin, Z. L., Mel, G., Shiqing, L., Shengxiu, L., & Zongsuo, L. (2011). Modulation of plant growth, water status and antioxidative system of two maize (Zea mays L.) cultivars induced by exogenous glycinebetaine under long term mild drought stress. Pakistan Journal of Botany, 43, 1587–1594.

    Google Scholar 

  42. Zhao, D., Oosterhuis, D. M., & Bednarz, C. W. (2001). Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica, 39, 103–109.

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the PMAS-Arid Agriculture University Rawalpindi, Pakistan for providing funds for completion of this research project.

Author information

Affiliations

Authors

Contributions

Design of experiment and data collection: AW, TAY and MA. Analysis and interpretation of data: AW, OF, NS, AR and KM. Manuscript preparation and review: AW, TAY, MA and AZ.

Corresponding authors

Correspondence to Allah Wasaya or Tauqeer Ahmad Yasir.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest for this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wasaya, A., Yasir, T.A., Sarwar, N. et al. Foliage applied potassium improves stay green, photosynthesis and yield of maize (Zea mays L.) under rainfed condition. Plant Physiol. Rep. (2021). https://doi.org/10.1007/s40502-021-00572-6

Download citation

Keywords

  • Foliar application
  • Grain yield
  • Potassium
  • Stomatal conductance
  • SPAD-chlorophyll