Elevated CO2 and temperature effect on growth, phenology, biomass and hypericin content of Hypericum perforatum L. in the western Himalaya

Abstract

Hypericum perforatum L. is a medicinal plant used in traditional and modern medicines in treating neurological disorders and depression. Still, there is a shortage of information on elevated CO2 (eCO2) and elevated temperature (eT) effect on this plant. Therefore, an experiment was conducted at ambient CO2 (390 µmol mol−1), elevated CO2 under free air CO2 enrichment (FACE, 550 ± 50 µmol mol−1) and elevated temperature under free air temperature increase (FATI, 2.5 ± 0.5 °C above ambient) facilities at Palampur, India during 2013–2014 and 2014–2015. During both the years, the number of branches, dry biomass (leaf, root, and flower), aboveground biomass increased under eCO2 over ambient. Averaged across both the year, total dry biomass increased by 10.4% in eCO2 at 6 months after exposure (MAE). However, by 12.6% at 8 MAE compared to ambient, decreased by 7.3% under eT at 6 MAE, respectively. Hypericin concentration was significantly higher under eT over ambient at 6 MAE. Phenological stages were advanced considerably by 3.0 to 3.5 days under eT as compared to ambient conditions. Vermicompost application increased leaf, stem and root dry biomass compared to control at 8 MAE during both the years. The results suggested that eCO2 stimulated plant biomass production and eT decreased biomass, advanced phenological stages, and enhanced hypericin content compared to ambient conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–371.

    Article  Google Scholar 

  2. Bishop, K. A., Betzelberger, A. M., Long, S. P., & Ainsworth, E. A. (2015). Is there potential to adapt soybean (Glycine max Merr.) to future CO2? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environment, 38, 1765–1774.

    Article  Google Scholar 

  3. Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M., & Henry, G. H. R. (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 21, 4651–4661.

    Article  Google Scholar 

  4. Booker, F. L., & Maier, C. A. (2001). Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiology, 21, 609–616.

    CAS  Article  Google Scholar 

  5. Butterly, C. R., Armstrong, R., Chen, D., & Tang, C. (2015). Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil, 391, 367–382.

    CAS  Article  Google Scholar 

  6. Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., et al. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 22, 856–874.

    Article  Google Scholar 

  7. Couceiro, M. A., Afreen, F., Zobayed, S. M. A., & Kozai, T. (2006). Variation in concentrations of major bioactive compounds of St. John’s Wort: Effects of harvesting time, temperature and germplasm. Plant Science, 170, 128–134.

    CAS  Article  Google Scholar 

  8. Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale R.). International Journal of Molecular Sciences, 12, 1101–1114.

    CAS  Article  Google Scholar 

  9. Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., et al. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Functional Plant Biology, 40, 148–159.

    CAS  Article  Google Scholar 

  10. Hogy, P., Keck, M., Niehaus, K., Franzaring, J., & Fangmeier, A. (2010). Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science, 52, 215–220.

    Article  Google Scholar 

  11. Hogy, P., Wieser, H., Kohler, P., Schwadorf, K., Breuer, J., Franzaring, J., et al. (2009). Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biology, 11, 60–69.

    Article  Google Scholar 

  12. Huang, W., He, X., Chen, W., Chen, Z., Ruan, Y., & Xu, S. (2008). Influence of elevated carbon dioxide and ozone on the foliar nonvolatile terpenoids in Ginkgo biloba. Bulletin of Environmental Contamination and Toxicology, 81, 432–435.

    CAS  Article  Google Scholar 

  13. IPCC. (2014). Summary for policymakers. In O. R. Edenhofer, Y. Pichs-Madruga, E. Sokona, S. Farahani, K. Kadner, A. Seyboth, et al. (Eds.), Climate change 2014, mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. New York: Cambridge University Press, Cambridge.

    Google Scholar 

  14. Jablonski, L. M., & Wang, X. (2002). Plant reproduction under elevated CO2 conditions: A meta-analysis of reports of 79 crop and wild species. New Phytologist, 156, 9–26.

    Article  Google Scholar 

  15. Jochum, G. M., Mudge, K. W., & Thomas, R. B. (2007). Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany, 94, 819–826.

    CAS  Article  Google Scholar 

  16. Kimball, B. A., Zhu, J., Cheng, L., Kobayashi, K., & Bindi, M. (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293–368.

    Article  Google Scholar 

  17. Luo, Z. B., Calfapietra, C. G., Scarascia-Mugnozza, G., Liberloo, M., & Polle, A. (2008). Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under free air CO2 enrichment (FACE) and nitrogen fertilization. Plant Soil, 304, 45–57.

    CAS  Article  Google Scholar 

  18. Odabas, M. S., Camas, N., Cirak, C., Raduiene, J., Janulis, V., & Ivanauskas, L. (2009). The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. Journal of Medicinal Plant Research, 3, 519–525.

    CAS  Google Scholar 

  19. Radusiene, J., Karpaviciene, B., & Stanius, Z. (2012). Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Botanica Lithuanica, 18, 101–108.

    Article  Google Scholar 

  20. Rakshit, R., Patra, A. K., Pal, D., Kumar, M., & Singh, R. (2012). Effect of elevated CO2 and temperature on nitrogen dynamics and microbial activity during wheat (Triticum aestivium L.) growth on a subtropical inceptisol in India. Journal of Agronomy and Crop Science, 198, 452–465.

    CAS  Article  Google Scholar 

  21. Rani, B. A., & Maragatham, N. (2013). Effect of elevated temperature on rice phenology and yield. Indian Journal of Science and Technology, 6(8), 5095–5097.

    Google Scholar 

  22. Save, R., Herralde, F., de Codina, C., Sanchez, X., & Biel, C. (2007). Effects of atmospheric carbon dioxide fertilization on biomass and secondary metabolites of some plant species with pharmacological interest under greenhouse conditions. Afinidad, 64, 237–241.

    CAS  Google Scholar 

  23. Snow, M. D., Bard, R. R., Olszyk, D. M., Minster, L. M., Hager, A. N., & Tingey, D. T. (2003). Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiologia Plantarum, 117, 352–358.

    CAS  Article  Google Scholar 

  24. Springate, D. A., & Kover, P. X. (2014). Plant responses to elevated temperatures: A field study on phenological sensitivity and fitness responses to simulated climate warming. Global Change Biology, 20, 456–465.

    Article  Google Scholar 

  25. Suraweera, D. D., Groom, T., & Nicolas, M. E. (2015). Impact of elevated atmospheric carbon dioxide and water deficit on flower development and pyrethrin accumulation in pyrethrum. Procedia Environmental Science, 29, 5–6.

    CAS  Article  Google Scholar 

  26. Tatsis, E. C., Boeren, S., Exarchou, V., Troganis, A. N., Vervoort, J., & Gerothanassis, I. P. (2007). Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry, 68, 383–393.

    CAS  Article  Google Scholar 

  27. Tatsis, E. C., Exarchou, V., Troganis, A. N., & Gerothanassis, I. P. (2008). 1H NMR determination of hypericin and pseudohypericin in complex natural mixtures by the use of strongly deshielded OH groups. Analytica Chimica Acta, 607, 219–226.

    CAS  Article  Google Scholar 

  28. Vanaja, M., Raghuram, R. P., Jyothi, L. N., Maheswari, M., Vagheera, P., Ratna, K. P., et al. (2007). Effect of elevated atmospheric CO2 concentrations on growth and yield of blackgram (Vigna mungo L. Hepper)—A rainfed pulse crop. Plant, Soil and Environment, 53, 81–88.

    CAS  Article  Google Scholar 

  29. Weigel, H. J., & Manderscheid, R. (2012). Crop growth responses to free air CO2 enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat. European Journal of Agronomy, 43, 97–107.

    Article  Google Scholar 

  30. World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. Geneva. Retrieved March 25, 2017, from http://apps.who.int/iris/handle/10665/254610.

  31. Yao, Y., Kang, T., Jin, L., Liu, Z., Zhang, Z., Xing, H., et al. (2019). Temperature-dependent growth and hypericin biosynthesis in Hypericum perforatum. Plant Physiology and Biochemistry, 139, 613–619.

    CAS  Article  Google Scholar 

  32. Zhang, G., Sakai, H., Tokida, T., Usui, Y., Zhu, C., Nakamura, H., et al. (2013). The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 64, 3179–3188.

    CAS  Article  Google Scholar 

  33. Zhu, C. W., Cheng, W. G., Sakai, H., Oikawa, S., Laza, R. C., Usui, Y., & Hasegawa, T. (2013). Effects of elevated CO2 on stem and root lodging among rice cultivars. Chinese Science Bulletin, 58, 1787–1794.

    CAS  Article  Google Scholar 

  34. Ziska, L. H., & Bunce, J. A. (2006). Plant responses to rising atmospheric carbon dioxide. In J. I. L. Morison & M. D. Morecroft (Eds), Plant growth climate change (p. 213). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  35. Zobayed, S., & Saxena, P. A. (2004). Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. In Vitro Cellular & Developmental Biology, 40, 108–114.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-IHBT, Palampur, India. Authors are also gratified to the Academy of Scientific and Innovative Research (AcSIR) and Council of Scientific and Industrial Research, India, New Delhi for providing financial grant under CSIR network project entitled “Plant diversity: Studying adaptation biology and understanding/exploring medicinally important plants for useful bioactives” (SIMPLE). This is IHBT Publication No. 4135

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaundal, M., Sharma, R. & Kumar, R. Elevated CO2 and temperature effect on growth, phenology, biomass and hypericin content of Hypericum perforatum L. in the western Himalaya. Plant Physiol. Rep. (2021). https://doi.org/10.1007/s40502-021-00571-7

Download citation

Keywords

  • Elevated CO2
  • Elevated temperature
  • Growth
  • Biomass
  • Hypericin
  • Vermicompost