Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv)

Abstract

Salicylic acid (SA) is known to be a plant signalling molecule that plays an important role in growth, development and defence response in plants. During the present study the effect of exogenous application of SA on the senescence of cut Nicotiana plumbaginifolia flowers was investigated. The buds were subjected to different concentrations (0.05, 0.1, 0.15, 0.20 and 0.25 mM) of SA. A separate set of flowers kept in distilled water designated the control. The flowers treated with various concentrations of SA resulted in improved flower longevity besides maintaining higher membrane stability index, soluble proteins and sugar fractions. SA treatment decreased the α-amino acid, total phenol content, lipid peroxidase and lipoxygenase activity. The flowers treated with SA showed a significant increase in activity of antioxidant enzymes like superoxide dismutase, catalase and ascorbate peroxidase. Among various concentrations used, 0.05 mM SA was found to be most effective in enhancing the flower longevity. Thus, exogenous SA could maintain membrane integrity by increasing antioxidant system activity, thereby retarding the senescence of cut N. plumbaginifolia flowers.

This is a preview of subscription content, access via your institution.

Fig. 1

Note: The clear difference in the flowers in vials containing 0.05 mM SA at day 5 and 7 as compared to control and other concentrations.

Fig. 2
Fig. 3

References

  1. Aebi, H. (1984). Catalase in vitro. Method Enzymol, 105, 121–126.

    CAS  Article  Google Scholar 

  2. Anjum, M. A., Naveed, F., Shakeel, F., & Amin, S. (2001). Effect of some chemicals onkeeping quality and vase life of tuberose (Polianthes tuberosa L.) cut flowers. J. Res. (Sci.), 12(1), 1–7.

    Google Scholar 

  3. Arora, A. V. P., Singh, S. S., Sindhu, D. N., & Voleti, S. R. (2007). Oxidative stress mechanisms during flower senescence. Japan: Plant Stress Global Science Books.

    Google Scholar 

  4. Ataii, D., Naderi, R., & Mirkohi, A. K. (2015). Exogenous putrescine delays senescence of Lisianthus cut flowers. Journal of Ornamental Plants, 5(3), 167–174.

    Google Scholar 

  5. Axelrod, B., Chesbrough, T. M., & Laakso, S. (1981). Lipoxygenase from soybean. In J. M. Lowenstein (Ed.), Method enzymol (pp. 441–451). New York: Academic.

    Google Scholar 

  6. Bayat, H., & Aminifard, M. H. (2017). Salicylic acid treatment extends the vase life of five commercial cut flowers. Electronic Journal of Biology, 13(1), 67–72.

    Google Scholar 

  7. Bueno, P., & Del Rio, L. A. (1992). Purification and properties of lyoxysomalcuperozinc superoxide dismutase from watermelon (Citrullus vulgaris Scrad.). Plant Physiology, 8, 331–336.

    Article  Google Scholar 

  8. Chen, G. X., & Asada, K. (1989). Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol, 30, 987–998.

    CAS  Article  Google Scholar 

  9. Dhindsa, R. S., Plumb-Dhindsa, D., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot, 32, 93–101.

    CAS  Article  Google Scholar 

  10. Droillard, M. J., Paulin, A., & Massot, J. C. (1987). Free radical production, catalase andsuperoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus catyophllus). Physiologia Plantarum, 71, 197–202.

    CAS  Article  Google Scholar 

  11. Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–138.

    CAS  Article  Google Scholar 

  12. Ezhilmathi, K., Singh, V. P., Arora, A., & Sairam, R. K. (2007). Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regulation, 51, 99–108.

    CAS  Article  Google Scholar 

  13. Fukuchi-Mizutani, M., Ishiguro, K., Nakayuama, T., Utsunomia, Y., Tanaka, Y., Kusumi, T., & Ueda, T. (2000). Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Science, 160, 129–137.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Gerailoo, S., & Ghasemnezhad, M. (2011). Effect of salicylic acid on antioxidant enzyme activity and petal senescence in ‘yellow island’ cut rose flowers. Journal of Fruit and Ornamental Plant Research, 19(1), 183–193.

    CAS  Google Scholar 

  15. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Hassan, F. A. S., & Ali, E. F. (2014). Protective effects of 1-methylcyclopropene and salicylic acid on senescence regulation of gladiolus cut spikes. Scientia Horticulturae, 179, 146–152.

    CAS  Article  Google Scholar 

  17. Hassan, I., Zhang, Y., Du, G., Wang, G., & Zhang, J. (2007). Effect of salicylic acid (SA) ondelaying fruit senescence of Huang Kum Pear. Frontiers of Agriculture in China, 1(4), 456–459.

    Article  Google Scholar 

  18. Hatamzadeh, A., Hatami, M., & Ghasemnezhad, M. (2012). Efficiency of salicylic acid delay petal senescence and extended quality of cut spikes of Gladiolus grandiflora cv. ‘Wing’s Sensation.’ African Journal of Agricultural Research, 7, 540–545.

    Google Scholar 

  19. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125(1), 189–198.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Heidarnezhadian, H., Eghbali, B., & Kazemi, M. (2017). Postharvest life of cut Gerbera flowers as affected by salicylic acid and citric acid. Trakia Journal of Sciences, 1, 27–29.

    Article  Google Scholar 

  21. Huang, M., Xu, Y. L., Khaeso, K., & Zhang, J. M. (2015). Flower-induction of Lemnagibba SH0204 by salicylic acid. Plant Physiology Journal, 51(4), 559–565.

    Google Scholar 

  22. Jones, R., & McConchie, R. (1995). Characteristics of petal senescence in a non-climacteric cut flower. Acta Horticulturae, 405, 216–223.

    Article  Google Scholar 

  23. Kazemi, M., & Shokri, K. (2011). Role of salicylic acid in decrease of membrane senescent in cut lisianthus flowers. World Applied Sciences Journal, 13(1), 142–146.

    CAS  Google Scholar 

  24. Kazemi, M., Abdossi, V., Kalateh, J. S., & Moghadam, A. R. L. (2018). Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to the vase life of cut rose flowers. The Journal of Horticultural Science and Biotechnology, 93(1), 81–90. https://doi.org/10.1080/14620316.2017.1344571.

    CAS  Article  Google Scholar 

  25. Kenis, J. D., Silvente, S. T., & Trippi, V. S. (1985). Nitrogen metabolism and senescence associated changes during growth of carnation flowers (Dianthuscaryophyllus). Physiologia Plantarum, 65, 455–459.

    CAS  Article  Google Scholar 

  26. Khurana, J. P., & Maheshwari, S. (1980). Some effects of salicylic acid on growth and flowering in Spirodelapolyrrhiza SP20. Plant and Cell Physiology, 21(5), 923–927.

    CAS  Article  Google Scholar 

  27. Khurana, J. P., & Maheshwari, S. (1983). Floral induction in wolffiamicroscopica by salicylic acid and related compounds under non-inductive long days. Plant and Cell Physiology, 24(5), 907–912.

    CAS  Article  Google Scholar 

  28. Langroudi, M. E., Hashemabadi, D., Jari, S. K., & Asadpour, L. (2020). Effect of pre- and postharvest applications of salicylic acid on the vase life of cut Alstroemeria flowers (Alstroemeria hybrida). Journal of Horticulture and Postharvest Research, 3(1), 115–124.

    Google Scholar 

  29. Lay-Yee, M., Stead, A. D., & Reid, M. S. (1992). Flower senescence in daylily (Hemerocallis). Physiologia Plantarum, 86, 308–314.

    CAS  Article  Google Scholar 

  30. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. J. Biol Chem., 193, 265–275.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Nelson, N. (1944). Photometric adaptation of Somogyi method for determination of glucose. J Biol Chem., 153, 375.

    CAS  Article  Google Scholar 

  32. Pacheco, A. C., da Silva Cabral, C., da Silva Fermino, É. S., & Aleman, C. C. (2013). Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. Journal of Medicinal Plant Research, 7(42), 3158–3163.

    Google Scholar 

  33. Panavas, T., & Rubinstein, B. (1998). Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Science, 133, 125–138.

    CAS  Article  Google Scholar 

  34. Rani, P., & Singh, N. (2014). Senescence and postharvest studies of cut flowers: a critical review. Pertanika Journal of Tropical Agricultural Science, 37(2), 159–201.

    Google Scholar 

  35. Rosen, H. (1957). A modified ninhydrin colorimetric method for amino acids. Archives of Biochemistry and Biophysics, 67, 10–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Rubinstein, B. (2000). Regulation of cell death in flower petals. Plant Molecular Biology, 44, 303–318.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Saeed, T., Hassan, I., Abbasi, N. A., & Jilani, G. (2014). Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers. Plant Growth Regulation, 72(89), 95. https://doi.org/10.1007/s10725-013-9839-y.

    CAS  Article  Google Scholar 

  38. Saeed, T., Hassan, I., Abbasi, N. A., & Jilani, G. (2016). Antioxidative activities and qualitative changes in gladiolus cutflowers in response to salicylic acid application. Scientia Horticulturae., 210, 236–241.

    CAS  Article  Google Scholar 

  39. Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol, 32, 594–597.

    Google Scholar 

  40. Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int. J. Pharm. Sci. Rev. Res., 3(1), 91–100.

    CAS  Google Scholar 

  41. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037.

    Article  Google Scholar 

  42. Singh, A., Kumar, J., & Kumar, P. (2008). Effect of plant growth regulators and sucrose on post harvest physiology, membrane stability and vase life of cut spikes of gladiolus. Plant Growth Regulation, 55, 221–229.

    CAS  Article  Google Scholar 

  43. Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica L. The quantitative analysis of phenolic constituents. J Sci Food Agric, 10, 63–68.

    CAS  Article  Google Scholar 

  44. Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Scientia Horticulturae, 142, 221–228.

    CAS  Article  Google Scholar 

  45. Tayyab, S., & Qamar, S. (1992). A look into enzyme kinetics: Some introductory experiments. Biochem. Edu., 20, 116–118.

    CAS  Article  Google Scholar 

  46. Thompson, S. E. (1974). The behaviour of cytoplasmic membranes in Phaseolusvulgaris cotyledon during germination. Canadian Journal of Botany, 2, 534–541.

    Google Scholar 

  47. van Doorn, W. G., & Stead, A. D. (1994). The physiology of petal senescence which is not initiated by ethylene. In R. J. Scott & A. D. Stead (Eds.), Molecular and cellular aspects of plant reproduction (pp. 239–254). Cambridge: Cambridge University Press.

    Google Scholar 

  48. van Doorn, W. G., & Woltering, E. J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany, 59, 453–480.

    PubMed  Article  CAS  Google Scholar 

  49. Woolhouse, H. W. (1984). The biochemistry and regulation of senescence in chloroplasts. Canadian Journal of Botany, 62, 2934–2942.

    CAS  Article  Google Scholar 

  50. Yuping, Z. (2009). Effects of salicylic acid on fresh keeping of cut Gerbera jamesonii flower. Anhui Agricultural 291 Science Bulletin. http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNB200913063.htm.

  51. Zhou, Q., Ma, C., Cheng, S., Wei, B., Liu, X., & Ji, S. (2014). Changes in antioxidative metabolism accompanying pitting development in stored blueberry fruit. Postharvest Biology and Technology, 88, 88–95.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nisar, S., Dar, R.A. & Tahir, I. Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiol. Rep. (2021). https://doi.org/10.1007/s40502-021-00569-1

Download citation

Keywords

  • Antioxidant enzymes
  • Lipoxygenase
  • Salicylic acid
  • Flower longevity