The effects of lead on growth and stress markers in two types of Vicia faba L.


Lead (Pb) is one of the most dangerous pollutants in the environment. In this research, the effects of Pb on growth, Pb accumulation in root and shoot and the levels of physiological/biochemical stress markers in leaves were investigated in two types of faba bean (Vicia faba L.). Plants were grown in sand, watered with half-strength Hoagland’s nutrient solution with 0, 5, 25, 100 or 125 μM of lead nitrate. Pb did not significantly affect the root and shoot dry weights. After two weeks of Pb treatment, the plants were harvested and stored for analyses. In leaves Pb significantly decreased the relative water content and the total chlorophyll concentration and significantly increased the proline concentration, but did not significantly affect the peroxidase activity and soluble sugar concentration. Overall, the large-seeded and the small-seeded type responded similarly to Pb, although there were barely significant type *Pb interactions for total chlorophyll and proline. The large-seeded type had significantly higher root and shoot dry weights and a higher foliar soluble sugar concentration, compared to the small-seeded one. Pb accumulation in roots was not significantly different between the types. However, the small-seeded type accumulated much more Pb in the shoot, resulting in a significantly higher root to shoot translocation factor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Adriano, D. C. (2001). Trace elements in terrestrial environments: biochemistry, bioavailability and risks of metals. New York: Springer-Verlag.

    Google Scholar 

  2. Adsule, R. N., & Akpapunam, M. (1996). Faba bean (Vicia faba L.). In E. Nwokolo & J. Smartt (Eds.), Food and feed from legumes and oilseeds (pp. 197–202). Boston: Springer.

    Google Scholar 

  3. Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology and Landscapes, 2, 51–60.

    Article  Google Scholar 

  4. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Daud, M. K., Variath, M. T., Shafaqat, A., Najeeb, U., Jamil, M., Hayat, Y., et al. (2009). Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. Journal of Hazardous Materials, 168, 614–625.

    CAS  Article  PubMed  Google Scholar 

  6. Garg, N., & Aggarwal, N. (2011). Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. Journal of Plant Growth Regulation, 30, 286–300.

    CAS  Article  Google Scholar 

  7. Groppa, M. D., Tomaro, M., & Benarides, M. P. (2007). Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals, 20, 185–195.

    CAS  Article  PubMed  Google Scholar 

  8. Han, Y., Huang, S., GuHan, J. Y., & QiuChen, S. J. (2008). Tolerance and accumulation of lead by species of Iris L. Ecotoxicology, 17, 853–859.

    CAS  Article  PubMed  Google Scholar 

  9. Heidari Dehno, A., & Mohtadi, A. (2018). The effect of different iron concentrations on lead accumulation in hydroponically grown Matthiola flavida Boiss. Ecological Research, 33, 757–765.

    CAS  Article  Google Scholar 

  10. Irigoyen, J. J., Einerich, D. W., & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84, 58–60.

    Article  Google Scholar 

  11. Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Mahmooda, Q., et al. (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154, 914–926.

    CAS  Article  PubMed  Google Scholar 

  12. Kamel, H. A. (2008). Lead accumulation and its effect on photosynthesis and free amino acids in Vicia faba grown hydroponically. Australian Journal of Basic and Applied Sciences, 2(3), 438–446.

    CAS  Google Scholar 

  13. Liu, D., Li, T. Q., Jin, X. F., Yang, X. E., Islam, E., & Mahmood, Q. (2008). Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Journal of Integrative Plant Biology, 50, 129–140.

    CAS  Article  PubMed  Google Scholar 

  14. Liu, X., & Huang, B. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40, 503–510.

    CAS  Article  Google Scholar 

  15. Lone, M. I., He, Z., Stoffella, P. J., & Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zheijang University Science B, 9, 210–220.

    CAS  Article  Google Scholar 

  16. Malar, S., Shivendra Vikram, S., Favas, P. J. C., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55, 54–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Martinez, J. P., Lutts, S., Schanck, A., Bajji, M., & Kinet, J. M. (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? Journal of Plant Physiology, 161(9), 1041–1051.

    CAS  Article  Google Scholar 

  18. Mohtadi, A., Ghaderian, S. M., & Schat, H. (2012). Lead, zinc and cadmium accumulation from two metalliferous soils with contrasting calcium contents in heavy metal-hyperaccumulating and non-hyperaccumulating metallophytes: a comparative study. Plant and Soil, 361, 109–118.

    CAS  Article  Google Scholar 

  19. Mroczek-Zdyrska, M., & Strubi´nskaHanaka, J. A. (2017). Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. Journal of Plant Growth Regulation, 36, 186–199.

    CAS  Article  Google Scholar 

  20. Paquine, R., & Lechasseur, P. (1979). Observations sure une method de dosage de la proline libre dans les de plantes. Canadian Journal of Botany, 57, 1851–1854.

    Article  Google Scholar 

  21. Resende, M. L. V., Nojosa, G. B. A., Cavalcanti, L. S., Aguilar, M. A. G., Silva, L. H. C. P., Perez, J. O., & andrade GCG, Carvalho GA, Castro RM, . (2002). Induction of resistance in cocoa against crinipellis perniciosa and verticillium dahlia by acibenzolar-s-methyl (ASM). Plant Pathology, 51, 621–628.

    CAS  Article  Google Scholar 

  22. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    CAS  Article  Google Scholar 

  23. Yan, X., Yu, D., Wang, H., & Wang, J. (2006). Response of submerged plant (Vallisneria spinulosa) clones to lead stress in the heterogenous soil. Chemosphere, 63, 1459–1465.

    CAS  Article  PubMed  Google Scholar 

Download references


We would like to thank the Yasouj University for providing research facilities for this study.

Author information



Corresponding author

Correspondence to A. Mohtadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panahandeh, A., Mohtadi, A., Masoumiasl, A. et al. The effects of lead on growth and stress markers in two types of Vicia faba L.. Plant Physiol. Rep. (2021).

Download citation


  • Chlorophyll
  • Growth
  • Lead
  • Peroxidase
  • Vicia faba