Skip to main content
Log in

Greenness identification using visible spectral colour indices for site specific weed management

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

In the present study an attempt has been made to identify the green vegetation based on colour using visible spectral colour indices such as excess green index (ExG), excess red index (ExR) and excess green minus excess red index (ExGR). At first stage, the performance of colour indices were tested at four illumination intensities using the standard colour patches. The results indicated a clear separation between the ExG, ExR and ExGR values of green colour patches (foliage, yellow green & green) and soil colour patches (dark skin, moderate red & magenta) at illumination intensity of 89.04 ± 8.12 lux than 188.8 ± 6.36, 259.25 ± 12.73 and 359.28 ± 10.10 lux illumination intensities. This observation suggested that the colour indices might perform better at low lighting condition. In the second stage, the images of original plants and soil were captured at an illumination intensity of 89.04 ± 8.12 lux and classification rate at different threshold were studied. The average correct classification rate of ExGR and ExG colour indices were found to be 93.03% and 86.03% at threshold values 0 and 10, respectively. This indicates that the colour index ExGR could be successfully employed for image based classification of plant and non-plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adelkhani, A., Beheshti, B., Minaei, S., & Javadikia, P. (2012). Optimization of lighting conditions and camera height for citrus image processing. World Applied Sciences Journal, 18(10), 1435–1442.

    Google Scholar 

  • Agrawal, K. N., Singh, K., Tiwari, P. S., & Chandra, M. P. (2012). Laser sensor based tractor mounted herbicide applicator. In Proceedings 2012 national conference on agro-informatics and precision agriculture (AIPA), 183–185.

  • Campbell, J. B. (1996). Introduction to remote sensing. New York: Guilford Press.

    Google Scholar 

  • Chandel, A. K., Tewari, V. K., Kumar, S. P., Nare, B., & Agarwal, A. (2018). On-the-go position sensing and controller predicated contact-type weed eradicator. Current Science, 114(7), 1485–1494.

    Article  CAS  Google Scholar 

  • Chandler, R. C. (2003). Autonomous agent navigation based on textural analysis (Doctoral dissertation, University of Florida).

  • El-Faki, M. S., Zhang, N., & Peterson, D. E. (2000). Factors affecting color-based weed detection. Transactions of the ASAE, 43(4), 1001–1009.

    Article  Google Scholar 

  • Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199.

    Article  Google Scholar 

  • Heisel, T., Christensen, S., & Walter, A. M. (1999). Whole-field experiments with site-specific weed management. Precision Agriculture, 99, 759–768.

    Google Scholar 

  • Kirk, K., Andersen, H. J., Thomsen, A. G., Jørgensen, J. R., & Jørgensen, R. N. (2009). Estimation of leaf area index in cereal crops using red–green images. Biosystems Engineering, 104(3), 308–317.

    Article  Google Scholar 

  • Mahmud, M. S., Zaman, Q. U., Esau, T. J., Price, G. W., & Prithiviraj, B. (2019). Development of an artificial cloud lighting condition system using machine vision for strawberry powdery mildew disease detection. Computers and Electronics in Agriculture, 158, 219–225.

    Article  Google Scholar 

  • Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2), 282–293.

    Article  Google Scholar 

  • Meyer, G. E., Hindman, T. W., & Laksmi, K. (1998). Machine vision detection parameters for plant species identification. In Precision agriculture and biological quality, 3543, 327–335. International Society for Optics and Photonics.

  • Rasmussen, J., Nørremark, M., & Bibby, B. M. (2007). Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Research, 47(4), 299–310.

    Article  Google Scholar 

  • Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61(1), 63–78.

    Article  Google Scholar 

  • Steward, B. L., & Tian, L. F. (1999). Machine-vision weed density estimation for real-time, outdoor lighting conditions. Transactions of the ASAE, 42(6), 1897.

    Article  Google Scholar 

  • Suh, H. K., Hofstee, J. W., & van Henten, E. J. (2014). Shadow-resistant segmentation based on illumination invariant image transformation. In Proceedings international conference of agricultural engineering.

  • Tangwongkit, R., Salokhe, V. M., & Jayasuriya, H. W. (2006). Development of a real-time, variable rate herbicide applicator using machine vision for between-row weeding of sugarcane fields. Agricultural Engineering International: CIGR Journal, 8, 1–12.

    Google Scholar 

  • Tangwongkit, B., Tangwongkit, R., & Nakashima, H. (2008). Field evaluation of a variable rate herbicide applicator. Agricultural Information Research, 17(1), 1–5.

    Article  Google Scholar 

  • Thainimit, S., Muangkasem, A., Keinprasit, R., Duangtanoo, T., Tangwongkit, R., & Isshiki, T. (2012). Real-time selective herbicide applicator for field sugarcane. Agriculture and Natural Resources, 46(6), 955–965.

    Google Scholar 

  • Tian, L. F., & Slaughter, D. C. (1998). Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture, 21(3), 153–168.

    Article  Google Scholar 

  • Tian, L. F., Slaughter, D. C., & Norris, R. F. (1997). Outdoor field machine vision identification of tomato seedlings for automated weed control. Transactions of ASAE, 40(6), 1761–1768.

    Google Scholar 

  • Wang, N., Zhang, N., Wei, J., Stoll, Q., & Peterson, D. E. (2007). A real-time, embedded, weed-detection system for use in wheat fields. Biosystems Engineering, 98(3), 276–285.

    Article  Google Scholar 

  • Yihang, F., Tingting, C., Ruifang, Z., & Xingyu, W. (2014). Automatic recognition of rape seeding emergence stage based on computer vision technology. In 2014 The third international conference on agro-geoinformatics, 1–5. IEEE.

Download references

Acknowledgements

The authors thank Director, ICAR-CIAE, Bhopal, for providing the facilities to conduct experiments.

Author information

Authors and Affiliations

Authors

Contributions

UK: Conceptualization, Methodology, Data curation, Software, Writing- Original draft preparation. KNA: Conceptualization, Methodology, Reviewing and Editing. NSC: Laboratory facility, Reviewing and Editing. KS: Software, Reviewing and Editing.

Corresponding author

Correspondence to K. Upendar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upendar, K., Agrawal, K.N., Chandel, N.S. et al. Greenness identification using visible spectral colour indices for site specific weed management. Plant Physiol. Rep. 26, 179–187 (2021). https://doi.org/10.1007/s40502-020-00562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00562-0

Keywords

Navigation