Skip to main content

Advertisement

Log in

Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Heat stress is a significant threat that limits crop yield and fecundity all over the world. Prevalent strategies for heat adaptation that alter technical and management systems are inadequate to sustain yield. As such, the identification of heat-tolerant genotypes with improved yield potential is crucial. Raising tolerant and stable cultivars can be tedious as heat-stress responses are highly variable across different developmental stages. While molecular breeding has progressed in engineering heat-tolerant lines, the complexity of genetic networks and divergence of heat tolerance mechanisms is the main hindrance for plant breeders. Hence, insight into the physiological and reproductive traits associated with heat tolerance could assist in the development of strategies to screen germplasm for heat tolerance. Exploitation and use of landraces and wild relatives in breeding may enhance favorable genetic diversity in crop plants. A holistic approach to delineate molecular markers, where quantitative trait loci (QTLs) for different traits linked to heat tolerance involving physiological and reproductive traits are characterized in well-controlled field environments, may be an option for optimizing germplasm under heat stress. Here, we present an outline of the effects of heat stress and its associated tolerance mechanisms in food crops, along with some physiological, molecular and reproductive characteristics such as ‘stay-green,’ membrane thermostability, canopy temperature depression, metabolites, genes, QTLs, and pollen fertility. Further, we provide information on conventional and molecular breeding approaches as well as different selection strategies for heat stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abro, S., Rajput, M. T., Khan, M. A., Sial, M. A., & Tahir, S. S. (2015). Screening of cotton (Gossypium hirsutum L.) genotypes for heat tolerance. Pakistan Journal of Botany, 47(6), 2085–2091.

    CAS  Google Scholar 

  • Ahmad, P., & Prasad, M. N. V. (2011). Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media. pp. (1–19).

  • Ahlawat, S., Chhabra, A. K., Behl, R. K., & Bisht, S. S. (2008). Genotypic divergence analysis for stay green characters in wheat (Triticum aestivum L. em. Thell). The South Pacific Journal of Natural and Applied Sciences, 26(1), 73–81.

    Article  Google Scholar 

  • Almeida, G. D., Nair, S., Borém, A., Cairns, J., Trachsel, S., Ribaut, J.-M., et al. (2014). Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular Breeding, 34(2), 701–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amani, I., Fischer, R. A., & Reynolds, M. P. (1996). Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science, 176(2), 119–129.

    Article  Google Scholar 

  • Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163–190.

    Article  CAS  Google Scholar 

  • Asthir, B. (2015). Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interactions, 10(1), 202–210.

    Article  CAS  Google Scholar 

  • Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H. M., et al. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 41(11), 1148–1167.

    Article  CAS  PubMed  Google Scholar 

  • Awika, H. O., Hays, D. B., Mullet, J. E., Rooney, W. L., & Weers, B. D. (2017). QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress. Euphytica, 213(9), 207.

    Article  Google Scholar 

  • Bac-Molenaar, J. A., Fradin, E. F., Becker, F. F. M., Rienstra, J. A., van der Schoot, J., Vreugdenhil, D., et al. (2015). Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. The Plant, Cell, tpc-15.

    Google Scholar 

  • Bala, P., & Sikder, S. (2017). Heat stress indices, correlation and regression analysis of wheat genotypes for yield potential. International Journal of Current Agricultural Sciences, 7(4), 190–194.

    Google Scholar 

  • Baliuag, N. N. A., Redona, E. D., Hernandez, J. E., Cruz, P. C. S., & Ye, C. (2015). Genetic analysis for heat tolerance and early morning flowering traits at flowering stage in rice (Oryza sativa L.). Philippine Journal of Crop Science (PJCS), 40(3), 62–72.

    Google Scholar 

  • Balota, M., Payne, W. A., Evett, S. R., & Peters, T. R. (2008). Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Science, 48(5), 1897–1910.

    Article  Google Scholar 

  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38.

    PubMed  Google Scholar 

  • Benites, F. R. G., & Pinto, C. A. B. P. (2011). Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breeding and Applied Biotechnology, 11(2), 133–140.

    Article  Google Scholar 

  • Bhusal, N., Sarial, A. K., Sharma, P., & Sareen, S. (2017). Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE, 12(12), e0189594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bishop, J., Potts, S. G., & Jones, H. E. (2016). Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. Journal of Agronomy and Crop Science, 202(6), 508–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum, A., Klueva, N., & Nguyen, H. T. (2001). Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117(2), 117–123.

    Article  Google Scholar 

  • Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current Opinion in Plant Biology, 9(2), 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Boote, K. J., Allen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. X., Pan, D., & Thomas, J. M. G. (2005). Elevated Temperature and CO2 Impacts on Pollination, Reproductive Growth, and Yield of Several Globally Important Crops. Journal of Agricultural Meteorology 60(5), 469–474.

    Article  Google Scholar 

  • Borrell, A. K., Oosterom, E. J., Mullet, J. E., George-Jaeggli, B., Jordan, D. R., Klein, P. E., et al. (2014). Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytologist, 203(3), 817–830.

    Article  PubMed  Google Scholar 

  • Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., et al. (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE, 5(3), e9514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Branham, S. E., Stansell, Z. J., Couillard, D. M., & Farnham, M. W. (2017). Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theoretical and Applied Genetics, 130(3), 529–538.

    Article  CAS  PubMed  Google Scholar 

  • Brestic, M., Zivcak, M., Olsovska, K., & Repkova, J. (2013). Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. Photosynthesis research for food, fuel and the future (pp. 510–513). Berlin: Springer.

    Google Scholar 

  • Burke, J. J., & Chen, J. (2015). Enhancement of reproductive heat tolerance in plants. PLoS ONE, 10(4), e0122933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Cairns, J. E., Crossa, J., Zaidi, P. H., Grudloyma, P., Sanchez, C., Araus, J. L., et al. (2013). Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 53(4), 1335–1346.

    Article  Google Scholar 

  • Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, K., Prasad, R., Thakur, P., Madhukar, K., & Prasad, L. C. (2017). Heat tolerance in wheat-a key strategy to combat climate change through molecular markers. International Journal of Current Microbiology and Applied Sciences, 6(3), 662–675.

    Article  CAS  Google Scholar 

  • Chauhan, S., Srivalli, S., Nautiyal, A. R., & Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47(4), 536–547.

    Article  CAS  Google Scholar 

  • Chebrolu, K. K., Fritschi, F. B., Ye, S., Krishnan, H. B., Smith, J. R., & Gillman, J. D. (2016). Impact of heat stress during seed development on soybean seed metabolome. Metabolomics, 12(2), 28.

    Article  CAS  Google Scholar 

  • Chen, L.-S., Li, P., & Cheng, L. (2009). Comparison of thermotolerance of sun-exposed peel and shaded peel of ‘Fuji’apple. Environmental and Experimental Botany, 66(1), 110–116.

    Article  CAS  Google Scholar 

  • Chen, Y., Müller, F., Rieu, I., & Winter, P. (2016). Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction, 29(1–2), 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, C.-M., Chen, S.-P., Chen, L.-F. O., Chiang, M.-C., Chien, H.-L., & Lin, K.-H. (2014). Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 266–277.

    Article  CAS  Google Scholar 

  • Chiang, C. M., Chien, H. L., Chen, L. F. O., Hsiung, T. C., Chiang, M. C., Chen, S. P., et al. (2015). Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana. Biologia Plantarum, 59(2), 305–315.

    Article  CAS  Google Scholar 

  • Condon, A. G., Reynolds, M. P., Rebetzke, G. J., Van Ginkel, M., Richards, R. A., & Farquhar, G. D. (2007). Using stomatal aperture-related traits to select for high yield potential in bread wheat. Wheat production in stressed environments (pp. 617–624). Berlin: Springer.

    Google Scholar 

  • Cornish, K., Radin, J. W., Turcotte, E. L., Lu, Z., & Zeiger, E. (1991). Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiology, 97(2), 484–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia, B., Valledor, L., Meijón, M., Rodriguez, J. L., Dias, M. C., Santos, C., et al. (2013). Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE, 8(1), e53543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottee, N. S., Tan, D. K. Y., Bange, M. P., Cothren, J. T., & Campbell, L. C. (2010). Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Science, 50(6), 2553–2564.

    Article  Google Scholar 

  • Das, G., & Rao, G. J. N. (2015). Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Frontiers in plant science, 6, 698.

    PubMed  PubMed Central  Google Scholar 

  • Das, S., Krishnan, P., Nayak, M., & Ramakrishnan, B. (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 101, 36–46.

    Article  Google Scholar 

  • de Luche, H. S., da Silva, J. A. G., da Maia, L. C., & de Oliveira, A. C. (2015). Stay-green: A potentiality in plant breeding. Ciência Rural, 45(10), 1755–1760.

    Article  Google Scholar 

  • de Souza, M. A., Pimentel, A. J. B., & Ribeiro, G. (2012). Breeding for heat-stress tolerance. Plant breeding for abiotic stress tolerance (pp. 137–156). Berlin: Springer.

    Book  Google Scholar 

  • Debnath, S., Gazal, A., Yadava, P., & Singh, I. (2016). Identification of contrasting genotypes under heat stress in maize (Zea mays L.). Maize Journal, 5(1–2), 14–24.

    Google Scholar 

  • Demİrel, U., Çopur, O., & Gür, A. (2016). Early-stage screening for heat tolerance in cotton. Plant Breeding, 135(1), 80–89.

    Article  CAS  Google Scholar 

  • Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., & Tan, D. K. Y. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9–19.

    Article  Google Scholar 

  • Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., & Tan, D. K. Y. (2012). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39(12), 1009–1018.

    Article  PubMed  Google Scholar 

  • Devasirvatham, V., Tan, D. K. Y., & Trethowan, R. M. (2016). Breeding strategies for enhanced plant tolerance to heat stress. Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 447–469). Berlin: Springer.

    Book  Google Scholar 

  • Dias, M. C., & Brüggemann, W. (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: Gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1), 96–102.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. (2011). High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis. Crop Science, 51(5), 2125–2131.

    Article  Google Scholar 

  • Dong, X., Yi, H., Lee, J., Nou, I.-S., Han, C.-T., & Hur, Y. (2015). Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS ONE, 10(6), e0130451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29(1–2), 67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers, R.-U., Oestergaard, J., Hollmer, S., Wingen, M., & Strauch, O. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophora–Photorhabdus luminescens. BioControl, 50(5), 699–716.

    Article  Google Scholar 

  • Erice, G., Irigoyen, J. J., Pérez, P., Martínez-Carrasco, R., & Sánchez-Díaz, M. (2006). Effect of elevated CO2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa. Plant Science, 170(6), 1059–1067.

    Article  CAS  Google Scholar 

  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farnham, M. W., & Bjorkman, T. (2011). Breeding vegetables adapted to high temperatures: a case study with broccoli. Hort Science, 46(8), 1093–1097.

    Google Scholar 

  • Feng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., et al. (2014). Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. Journal of Agronomy and Crop Science, 200(2), 143–155.

    Article  CAS  Google Scholar 

  • Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z.-M., Condon, A. G., & Saavedra, A. L. (1998). Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 38(6), 1467–1475.

    Article  Google Scholar 

  • Folsom, J. J., Begcy, K., Hao, X., Wang, D., & Walia, H. (2014). Rice FIE1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiology, 165, 238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., et al. (2009). Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of Experimental Botany, 60(13), 3891–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey, F. P., Presterl, T., Lecoq, P., Orlik, A., & Stich, B. (2016). First steps to understand heat tolerance of temperate maize at adult stage: Identification of QTL across multiple environments with connected segregating populations. Theoretical and Applied Genetics, 129, 945–961.

    Article  PubMed  Google Scholar 

  • Frey, F. P., Urbany, C., Hüttel, B., Reinhardt, R., & Stich, B. (2015). Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genomics, 16, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frova, C., & Sari-Gorla, M. (1994). Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Molecular and General Genetics MGG, 245, 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J.-D., Yan, Y.-F., Kim, M. Y., Lee, S.-H., & Lee, B.-W. (2011). Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome, 54, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G., Li, J., Li, H., Li, F., Xu, K., Yan, G., et al. (2014). Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breeding Science, 64, 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur, P. M., Jukanti, A. K., Samineni, S., Chaturvedi, S. K., Basu, P. S., Babbar, A., et al. (2013). Climate change and heat stress tolerance in chickpea. Climate Change and Plant Abiotic Stress, Tolerance, 837–856.

    Article  Google Scholar 

  • Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2(3), 199–221.

    Article  Google Scholar 

  • Gautam, A., Agrawal, D., SaiPrasad, S. V., & Jajoo, A. (2014). A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiology and Molecular Biology of Plants, 20(4), 533–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gororo, N. N., Eagles, H. A., Eastwood, R. F., Nicolas, M. E., & Flood, R. G. (2002). Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica, 123(2), 241–254.

    Article  Google Scholar 

  • Gottardini, E., Cristofori, A., Cristofolini, F., Nali, C., Pellegrini, E., Bussotti, F., et al. (2014). Chlorophyll-related indicators are linked to visible ozone symptoms: evidence from a field study on native Viburnum lantana L. plants in northern Italy. Ecological Indicators, 39, 65–74.

    Article  CAS  Google Scholar 

  • Gous, P. W., Hickey, L., Christopher, J. T., Franckowiak, J., & Fox, G. P. (2016). Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica, 207(2), 305–317.

    Article  CAS  Google Scholar 

  • Greer, D. H., & Weedon, M. M. (2012). Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant, Cell and Environment, 35(6), 1050–1064.

    Article  PubMed  Google Scholar 

  • Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). QTL identification for tolerance to fruit set in tomato by fAFLP markers. Crop Breeding and Applied, Biotechnology, 234–241.

    Article  Google Scholar 

  • Grover, A., Mittal, D., Negi, M., & Lavania, D. (2013). Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Science, 205, 38–47.

    Article  PubMed  CAS  Google Scholar 

  • Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. In Proceedings of the national academy of sciences (p. 201320008).

  • Guo, W., Zhang, J., Zhang, N., Xin, M., Peng, H., Hu, Z., et al. (2015). The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS ONE, 10(8), e0135667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35(6), 1837–1842.

    Article  CAS  Google Scholar 

  • Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132(2), 220–235.

    CAS  PubMed  Google Scholar 

  • Han, F., Chen, H., Li, X.-J., Yang, M.-F., Liu, G.-S., & Shen, S.-H. (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794(11), 1625–1634.

    Article  CAS  Google Scholar 

  • Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., & Sage, T. L. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Journal of Experimental Botany, 64(10), 2971–2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

    Article  Google Scholar 

  • Hemantaranjan, A., Bhanu, A. N., Singh, M. N., Yadav, D. K., Patel, P. K., Singh, R., et al. (2014). Heat stress responses and thermotolerance. Advances in Plants and Agricultural Research, 1(12), 10–15406.

    Google Scholar 

  • Hofmann, G. E., & Todgham, A. E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72, 127–145.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., Song, N., Zheng, M., Liu, X., Liu, Z., Xing, J., et al. (2015a). Histone acetyltransferase GCN 5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. The Plant Journal, 84(6), 1178–1191.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Yang, Y., Gong, F., Zhang, D., Zhang, L., Wu, L., et al. (2015b). Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Journal of Proteomics, 115, 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Hüttner, S., & Strasser, R. (2012). Endoplasmic reticulum-associated degradation of glycoproteins in plants. Frontiers in Plant Science, 3, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh, B., Ehlers, J. D., Huang, B. E., Muñoz-Amatriaín, M., Lonardi, S., Santos, J. R. P., et al. (2018). A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). The Plant Journal, 93(6), 1129–1142.

    Article  CAS  PubMed  Google Scholar 

  • i Azam, F., Chang, X., & Jing, R. (2015). Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica, 202(2), 245–258.

    Article  CAS  Google Scholar 

  • Ismail, A. M., & Hall, A. E. (1999). Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 39(6), 1762–1768.

    Article  Google Scholar 

  • Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadish, S. V. K., Cairns, J., Lafitte, R., Wheeler, T. R., Price, A. H., & Craufurd, P. Q. (2010). Genetic analysis of heat tolerance at anthesis in rice. Crop Science, 50(5), 1633–1641.

    Article  CAS  Google Scholar 

  • Jagadish, K. S. V., Craufurd, P., Shi, W., & Oane, R. (2014). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48–55.

    Article  CAS  Google Scholar 

  • Jagadish, S. V. K., Craufurd, P. Q., & Wheeler, T. R. (2008). Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Science, 48(3), 1140–1146.

    Article  Google Scholar 

  • Jenks, M. A., & Hasegawa, P. M. (2008). Plant abiotic stress. London: Wiley.

    Google Scholar 

  • Jha, U. C., Bohra, A., Parida, S. K., & Jha, R. (2017). Integrated “omics” approaches to sustain global productivity of major grain legumes under heat stress. Plant Breeding, 136(4), 437–459.

    Article  CAS  Google Scholar 

  • Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133(6), 679–701.

    Article  Google Scholar 

  • Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., et al. (2007). Molecular cloning and function analysis of the stay green gene in rice. The Plant Journal, 52(2), 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Zheng, Q., Chen, L., Liang, Y., & Wu, J. (2018). Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum, 40(1), 9.

    Article  CAS  Google Scholar 

  • Joshi, A. K., Kumari, M., Singh, V. P., Reddy, C. M., Kumar, S., Rane, J., et al. (2007). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica, 153(1–2), 59–71.

    Google Scholar 

  • Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 102.

    Article  CAS  Google Scholar 

  • Karademir, E., Karademir, Ç., Ekinci, R., Başbağ, S., & Başal, H. (2012). Screening cotton varieties (Gossypium hirsutum L.) for heat tolerance under field conditions. African Journal of Agricultural Research, 7 (47), 6335–6342.

    Google Scholar 

  • Katiyar-Agarwal, S., Agarwal, M., & Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology, 51(5), 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Kato, K., Miura, H., & Sawada, S. (2000). Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theoretical and Applied Genetics, 101(7), 1114–1121.

    Article  CAS  Google Scholar 

  • Kaur, R., Bains, T. S., Bindumadhava, H., & Nayyar, H. (2015). Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae, 197, 527–541.

    Article  Google Scholar 

  • Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40(12), 1334–1349.

    Article  CAS  PubMed  Google Scholar 

  • Kaushal, N., Bhandari, K., Siddique, K. H. M., & Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food and Agriculture, 2(1), 1134380.

    Article  Google Scholar 

  • Kim, M. D., Kim, Y., Kwon, S., Yun, D., Kwak, S., & Lee, H. (2010). Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plantarum, 140(2), 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kumar, N., et al. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4), 83–91.

    CAS  Google Scholar 

  • Kumar, U., Joshi, A. K., Kumari, M., Paliwal, R., Kumar, S., & Röder, M. S. (2010). Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica, 174(3), 437–445.

    Article  Google Scholar 

  • Kumar, S., Thakur, P., Kaushal, N., Malik, J. A., Gaur, P., & Nayyar, H. (2013). Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science, 59(6), 823–843.

    Article  CAS  Google Scholar 

  • Kumari, M., Pudake, R. N., Singh, V. P., & Joshi, A. K. (2013). Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica, 190(1), 87–97.

    Article  Google Scholar 

  • Kumari, M., Singh, V. P., Tripathi, R., & Joshi, A. K. (2007). Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. Wheat production in stressed environments (pp. 357–363). Berlin: Springer.

    Google Scholar 

  • Kusaba, M., Tanaka, A., & Tanaka, R. (2013). Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence. Photosynthesis Research, 117(1–3), 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Lafarge, T., Bueno, C., Frouin, J., Jacquin, L., Courtois, B., & Ahmadi, N. (2017). Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE, 12(2), e0171254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18(1), 124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavania, D., Siddiqui, M. H., Al-Whaibi, M. H., Singh, A. K., Kumar, R., & Grover, A. (2015). Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 37(1), 1737.

    Article  CAS  Google Scholar 

  • Lee, K. W., Cha, J. Y., Mun, J. Y., Lee, B. H., Kim, Y. G., & Lee, S. H. (2015). Heterologous expression of Mshsp23, a Medicago Sativa small heat shock protein, enhances heat stress tolerance in creeping bentgrass. Journal of Animal and Plant Sciences, 25, 884–891.

    CAS  Google Scholar 

  • Lee, K.-W., Rahman, M., Choi, G. J., Kim, K.-Y., Ji, H. C., Hwang, T. Y., et al. (2017). Expression of small heat shock protein23 enhanced heat stress tolerance in transgenic alfaalfa plants. JAPS: Journal of Animal and Plant Sciences, 27(4), 1238.

    Google Scholar 

  • Lee, K.-W., Rahman, M. A., Kim, K.-Y., Choi, G. J., Cha, J.-Y., Cheong, M. S., et al. (2018). Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turkish Journal of Biology, 42(1), 12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Fu, Q., Chen, L., Huang, W., & Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 233(6), 1237–1252.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Hu, T., Amombo, E., & Fu, J. (2017). Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. Journal of Plant Physiology, 213, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Lawas, L. M. F., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., et al. (2015). Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell and Environment, 38(10), 2171–2192.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Li, Z., Li, S., Guo, S., Meng, Q., Li, G., et al. (2014a). Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Molecular Biology Reporter, 32(1), 42–51.

    Article  CAS  Google Scholar 

  • Li, S., Liu, J., Liu, Z., Li, X., Wu, F., & He, Y. (2014b). Heat-induced tas1 target1 mediates thermotolerance via heat stress transcription factor A1a–directed pathways in Arabidopsis. The Plant, Cell, tpc-114.

    Google Scholar 

  • Li, Q., Wang, W., Wang, W., Zhang, G., Liu, Y., Wang, Y., et al. (2018). Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Frontiers in Plant Science, 9, 521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, J., Zhang, H., Shao, X., Zhong, P., & Huang, Y. (2011). Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Science, 18(4), 279–286.

    Article  Google Scholar 

  • Liberek, K., Lewandowska, A., & Ziętkiewicz, S. (2008). Chaperones in control of protein disaggregation. The EMBO Journal, 27(2), 328–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H., Li, X., Gao, J., Junxiang, S., & Shi, M. (2018). New rice high temperature resistance gene and use in crop breeding resistance to high temperature thereof. Google Patents. 

  • Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 6, 267.

    PubMed  PubMed Central  Google Scholar 

  • Liu, G.-T., Wang, J.-F., Cramer, G., Dai, Z.-W., Duan, W., Xu, H.-G., et al. (2012). Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biology, 12(1), 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucas, M. R., Ehlers, J. D., Huynh, B. L., Diop, N. N., Roberts, P. A., & Close, T. J. (2013). Markers for breeding heat-tolerant cowpea. Molecular breeding, 31(3), 529–536.

    Article  Google Scholar 

  • Maavimani, M., & Saraswathi, R. (2014). Anther characteristics and spikelet fertility in rice (Oryza sativa L.) under high temperature stress at anthesis. Indian Journal of Genetics and Plant Breeding (The), 74(3), 300–308.

    Article  Google Scholar 

  • Madan, P., Jagadish, S. V. K., Craufurd, P. Q., Fitzgerald, M., Lafarge, T., & Wheeler, T. R. (2012). Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany, 63(10), 3843–3852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaspina, P., Giordani, P., Faimali, M., Garaventa, F., & Modenesi, P. (2014). Assessing photosynthetic biomarkers in lichen transplants exposed under different light regimes. Ecological Indicators, 43, 126–131.

    Article  CAS  Google Scholar 

  • Mangelsen, E., Kilian, J., Harter, K., Jansson, C., Wanke, D., & Sundberg, E. (2011). Transcriptome analysis of high-temperature stress in developing barley caryopses: Early stress responses and effects on storage compound biosynthesis. Molecular Plant, 4(1), 97–115.

    Article  CAS  PubMed  Google Scholar 

  • Marcum, K. B. (1998). Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Science, 38(5), 1214–1218.

    Article  Google Scholar 

  • Martineau, J. R., Specht, J. E., Williams, J. H., & Sullivan, C. Y. (1979). Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability 1. Crop Science, 19(1), 75–78.

    Article  Google Scholar 

  • Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M. H., et al. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174(3), 423–436.

    Article  Google Scholar 

  • Mason, R. E., & Singh, R. P. (2014). Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress. Agronomy, 4(2), 191–201.

    Article  Google Scholar 

  • Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116–126.

    Article  CAS  Google Scholar 

  • Matsui, T., & Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany, 89(6), 683–687.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCue, A. D., Panda, K., Nuthikattu, S., Choudury, S. G., Thomas, E. N., & Slotkin, R. K. (2014). ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. The EMBO Journal, 34, e201489499.

    Google Scholar 

  • Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reproduction, 29(1–2), 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Min, L., Li, Y., Hu, Q., Zhu, L., Gao, W., Wu, Y., et al. (2014). Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiology, 178, 113.

    Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37(3), 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer Brassica. Crop Science, 42(3), 797–803.

    Article  Google Scholar 

  • Muchero, W., Roberts, P. A., Diop, N. N., Drabo, I., Cisse, N., Close, T. J., et al. (2013). Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE, 8(7), e70041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., & Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287(5452), 476–479.

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan, S., Jagadish, S. V. K., Prasad, A. S. H., Thomar, A. K., Anand, A., Pal, M., et al. (2010). Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agriculture, Ecosystems & Environment, 138(3–4), 274–281.

    Article  Google Scholar 

  • Naveed, M., Ahsan, M., Akram, H. M., Aslam, M., & Ahmed, N. (2016). Genetic effects conferring heat tolerance in a cross of tolerant × susceptible maize (Zea mays L.) genotypes. Frontiers in Plant Science, 7, 729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz, A., Farooq, M., Cheema, S. A., & Wahid, A. (2013). Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture and Biology, 15(6), 1354.

    Google Scholar 

  • Naydenov, M., Baev, V., Apostolova, E., Gospodinova, N., Sablok, G., Gozmanova, M., et al. (2015). High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiology and Biochemistry, 87, 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Norvie, L. M., Lambio, L. A. F., Luvina, B., & Cardenas, C. C. (2014). Germplasm innovation of heat tolerance in rice (Oryza sativa) for irrigated lowland conditions in the Philippines. Rice Science, 21, 162.

    Article  Google Scholar 

  • Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69(19), 3225–3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22(1), 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Ono, K., Hibino, T., Kohinata, T., Suzuki, S., Tanaka, Y., Nakamura, T., et al. (2001). Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. Plant Science, 160(3), 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Ottaviano, E., Gorla, M. S., Pe, E., & Frova, C. (1991). Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize. Theoretical and Applied Genetics, 81(6), 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Panigrahy, M., Neelamraju, S., Rao, D. N., & Ramanan, R. (2011). Heat tolerance in rice mutants is associated with reduced accumulation of reactive oxygen species. Biologia Plantarum, 55(4), 721.

    Article  CAS  Google Scholar 

  • Park, C.-J., & Seo, Y.-S. (2015). Heat shock proteins: A review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 31(4), 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., et al. (2010). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62(2), 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Paul, S., Das, M. K., Baishya, P., Ramteke, A., Farooq, M., Baroowa, B., et al. (2017). Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Scientia Horticulturae, 225, 134–140.

    Article  Google Scholar 

  • Paul, P. J., Samineni, S., Sajja, S. B., Rathore, A., Das, R. R., Chaturvedi, S. K., et al. (2018a). Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica, 214(2), 27.

    Article  CAS  Google Scholar 

  • Paul, P. J. N., Samineni, S., Thundi, M., Sajja, S. B., Rathore, A., Das, R. R., et al. (2018b). Molecular mapping of QTLs associated with heat tolerance in chickpea. Internnational Journal of Molecular Science, 19, E2166. https://doi.org/10.3390/ijms19082166.

    Article  Google Scholar 

  • Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6), 130.

    Article  CAS  Google Scholar 

  • Pecinka, A., & Mittelsten Scheid, O. (2012). Stress-induced chromatin changes: a critical view on their heritability. Plant and Cell Physiology, 53(5), 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petolino, J. F., Cowen, N. M., Thompson, S. A., & Mitchell, J. C. (1992). Gamete selection for heat stress tolerance in maize. Angiosperm pollen and ovules (pp. 355–358). Berlin: Springer.

    Book  Google Scholar 

  • Peverelli, M. C., & Rogers, W. J. (2013). Heat stress effects on crop performance and tools for tolerance breeding. Revista de la FCA UNCUYO, 45(2), 349.

    Google Scholar 

  • Pinto, R. S., Lopes, M. S., Collins, N. C., & Reynolds, M. P. (2016). Modelling and genetic dissection of staygreen under heat stress. Theoretical and Applied Genetics, 129(11), 2055–2074.

    Article  CAS  PubMed  Google Scholar 

  • Poli, Y., Basava, R. K., Panigrahy, M., Vinukonda, V. P., Dokula, N. R., Voleti, S. R., et al. (2013). Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Porch, T. G. (2006). Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science, 192(5), 390–394.

    Article  Google Scholar 

  • Pottorff, M., Roberts, P. A., Close, T. J., Lonardi, S., Wanamaker, S., & Ehlers, J. D. (2014). Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp]. BMC Genomics, 15(1), 328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pradhan, G. P., Prasad, P. V. V., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Science, 52(1), 292–304.

    Article  Google Scholar 

  • Prasad, P. V. V., Bheemanahalli, R., & Jagadish, S. V. K. (2017). Field crops and the fear of heat stress: Opportunities, challenges and future directions. Field Crops Research, 200, 114–121.

    Article  Google Scholar 

  • Prasad, P. V. V., Boote, K. J., Allen, L. H., Jr., & Thomas, J. M. G. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8(8), 710–721.

    Article  Google Scholar 

  • Qin, D., Wang, F., Geng, X., Zhang, L., Yao, Y., Ni, Z., et al. (2015). Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant Molecular Biology, 87(1–2), 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Qu, A.-L., Ding, Y.-F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432(2), 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Rahaman, M., Mamidi, S., & Rahman, M. (2017). Association mapping of agronomic traits of canola (“Brassica napus” L.) subject to heat stress under field conditions. Australian Journal of Crop Science, 11(9), 1094.

    Article  Google Scholar 

  • Rahaman, M., Mamidi, S., & Rahman, M. (2018). Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions. The Crop Journal, 6(2), 115–125.

    Article  Google Scholar 

  • Rahman, S. U., Arif, M., Hussain, K., Hussain, S., Mukhtar, T., Razaq, A., et al. (2013). Evaluation of maize hybrids for tolerance to high temperature stress in central Punjab. Columbia International Publishing American Journal of Bioengineering and Biotechnology, 1(1), 30–36.

    Google Scholar 

  • Ramani, H. R., Mandavia, M. K., Dave, R. A., Bambharolia, R. P., Silungwe, H., & Garaniya, N. H. (2017). Biochemical and physiological constituents and their correlation in wheat (Triticum aestivum L.) genotypes under high temperature at different development stages. International Journal of Plant Physiology and Biochemistry, 9(1), 1–8.

    Article  Google Scholar 

  • Ray, J., & Ahmed, J. J. (2015). Canopy temperature effects on yield and grain growth of different wheat genotypes. IOSR Journal of Agriculture and Veterinary Science, 8(7), 2319–2380.

    Google Scholar 

  • Rekika, D., Kara, Y., Souyris, I., Nachit, M. M., Asbati, A., & Monneveux, P. (2000). The tolerance of PSII to high temperatures in durum wheat (T. turgidum conv. durum): Genetic variation and relationship with yield under heat stress. Cereal Research Communications, 28, 395–402.

    CAS  Google Scholar 

  • Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I., & Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology, 21(6), 717–730.

    Article  Google Scholar 

  • Reynolds, M. P., Singh, R. P., Ibrahim, A., Ageeb, O. A. A., Larque-Saavedra, A., & Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 100(1–3), 85–94.

    Article  Google Scholar 

  • Rodziewicz, P., Swarcewicz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36(1), 1–19.

    Article  CAS  Google Scholar 

  • Roychoudhury, A., Datta, K., & Datta, S. K. (2011). Abiotic stress in plants: From genomics to metabolomics. Omics and Plant Abiotic Stress Tolerance (pp. 91–120). Chicago: Bentham Science Publishers.

    Google Scholar 

  • Sage, T. L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H. A., Sultmanis, S., & Sage, R. F. (2015). The effect of high temperature stress on male and female reproduction in plants. Field Crops Research, 182, 30–42.

    Article  Google Scholar 

  • Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M. (2013). Epigenetic mechanisms of plant stress responses and adaptation. Plant cell reports, 32(8), 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  • Saint Pierre, C., Crossa, J., Manes, Y., & Reynolds, M. P. (2010). Gene action of canopy temperature in bread wheat under diverse environments. Theoretical and Applied Genetics, 120(6), 1107–1117.

    Article  PubMed  Google Scholar 

  • Sairam, R. K., Srivastava, G. C., & Saxena, D. C. (2000). Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43(2), 245–251.

    Article  CAS  Google Scholar 

  • Salem, M. A., Kakani, V. G., Koti, S., & Reddy, K. R. (2007). Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 47(1), 219–231.

    Article  Google Scholar 

  • Sanmiya, K., Suzuki, K., Egawa, Y., & Shono, M. (2004). Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters, 557(1–3), 265–268.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, N. K., Kim, Y.-K., & Grover, A. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Molecular Biology, 84(1–2), 125–143.

    Article  CAS  PubMed  Google Scholar 

  • Sato, H., Todaka, D., Kudo, M., Mizoi, J., Kidokoro, S., Zhao, Y., et al. (2016). The Arabidopsis transcriptional regulator DPB 3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 14(8), 1756–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savchenko, G. E., Klyuchareva, E. A., Abramchik, L. M., & Serdyuchenko, E. V. (2002). Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 49(3), 349–359.

    Article  CAS  Google Scholar 

  • Saxena, D. C., Prasad, S. V. S., Chatrath, R., Mishra, S. C., Watt, M., Prashar, R., et al. (2014). Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Physiology, 19(1), 43–47.

    Article  Google Scholar 

  • Setimela, P. S., Andrews, D. J., Partridge, J., & Eskridge, K. M. (2005). Screening sorghum seedlings for heat tolerance using a laboratory method. European Journal of Agronomy, 23(2), 103–107.

    Article  Google Scholar 

  • Shamsudin, N. A. A., Swamy, B. P. M., Ratnam, W., Cruz, M. T. S., Raman, A., & Kumar, A. (2016). Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics, 17(1), 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanmugavadivel, P. S., Sv, A. M., Prakash, C., Ramkumar, M. K., Tiwari, R., Mohapatra, T., et al. (2017). High resolution mapping of QTLs for heat tolerance in rice using a 5 K SNP array. Rice, 10(1), 28.

    Article  Google Scholar 

  • Sharma, D. K., Andersen, S. B., Ottosen, C., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2), 284–298.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, D. K., Fernández, J. O., Rosenqvist, E., Ottosen, C.-O., & Andersen, S. B. (2014). Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat. Journal of Plant Physiology, 171(8), 576–586.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, L., Priya, M., Bindumadhava, H., Nair, R. M., & Nayyar, H. (2016). Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae, 213, 379–391.

    Article  Google Scholar 

  • Sharma, R. C., Tiwary, A. K., & Ortiz-Ferrara, G. (2008). Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breeding, 127(3), 241–248.

    Article  Google Scholar 

  • Shi, P., Tang, L., Lin, C., Liu, L., Wang, H., Cao, W., et al. (2015). Modeling the effects of post-anthesis heat stress on rice phenology. Field Crops Research, 177, 26–36.

    Article  Google Scholar 

  • Shi, J., Yan, B., Lou, X., Ma, H., & Ruan, S. (2017). Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biology, 17(1), 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., et al. (2015). Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnology Journal, 13(9), 1251–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuancang, Y., Yongjian, W., & Xiaoying, Z. (2003). Mapping and analysis QTL controlling heat tolerance in Brassica campestris L. ssp. Pekinensis. Acta Horticulturae Sinica, 30(4), 417–420.

    Google Scholar 

  • Shukla, N. (2013). Flower numbers, pod production, pollen viability are reduced with flower and pod abortion increased in Chickpea (Cicer arietinum L.) under heat stress. Research Journal of Recent Sciences, 2, 116–119.

    Google Scholar 

  • Sikder, S., & Paul, N. K. (2010). Effects of post-anthesis heat stress on stem reserves mobilization, canopy temperature depression and floret sterility of wheat cultivars. Bangladesh Journal of Botany, 39(1), 51–55.

    Article  Google Scholar 

  • Singh, A., & Grover, A. (2008). Genetic engineering for heat tolerance in plants. Physiology and Molecular Biology of Plants, 14(1–2), 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D., Singh, C. K., Singh Tomar, R. S., & Pal, M. (2017). Genetics and molecular mapping of heat tolerance for seedling survival and pod set in lentil. Crop Science, 57(6), 3059–3067.

    Article  CAS  Google Scholar 

  • Singh, K., Wijewardana, C., Gajanayake, B., Lokhande, S., Wallace, T., Jones, D., et al. (2018). Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica, 214(3), 57.

    Article  CAS  Google Scholar 

  • Sita, K., Sehgal, A., Hanumantha Rao, B., Nair, R. M., Vara Prasad, P. V., Kumar, S., et al. (2017a). Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., et al. (2017b). Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers. Plant Science, 8, 744.

    Google Scholar 

  • Sohn, S. O., & Back, K. (2007). Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biologia Plantarum, 51(2), 340–342.

    Article  CAS  Google Scholar 

  • Solís, M.-T., Rodríguez-Serrano, M., Meijón, M., Cañal, M.-J., Cifuentes, A., Risueño, M. C., et al. (2012). DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. Journal of Experimental Botany, 63(18), 6431–6444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stefanov, D., Petkova, V., & Denev, I. D. (2011). Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Scientia Horticulturae, 128(1), 1–6.

    Article  Google Scholar 

  • Stratonovitch, P., & Semenov, M. A. (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Journal of Experimental Botany, 66(12), 3599–3609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Van Montagu, M., & Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 1–9.

    Article  CAS  Google Scholar 

  • Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J., Nguyen, N. T., et al. (2010). High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48(2–3), 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K., Takeda, H., Tsukaguchi, T., & Egawa, Y. (2001). Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sexual Plant Reproduction, 13(6), 293–299.

    Article  Google Scholar 

  • Talukder, S. K., Babar, M. A., Vijayalakshmi, K., Poland, J., Prasad, P. V. V., Bowden, R., et al. (2014a). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 15(1), 97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talukder, A., McDonald, G. K., & Gill, G. S. (2014b). Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research, 160, 54–63.

    Article  Google Scholar 

  • Tan, W., Wei Meng, Q., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168(17), 2063–2071.

    Article  CAS  PubMed  Google Scholar 

  • Team, C. W., Pachauri, R. K., & Meyer, L. A. (2014). IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151.

  • Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.

    Article  Google Scholar 

  • Tenorio, F. A., Ye, C., Redoña, E., Sierra, S., Laza, M., & Argayoso, M. A. (2013). Screening rice genetic resources for heat tolerance. SABRAO Journal of Breeding and Genetics, 45(3), 371–381.

    Google Scholar 

  • Thomas, H., & Ougham, H. (2014). The stay-green trait. Journal of Experimental Botany, 65(14), 3889–3900.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y., Chen, J., Chen, C., Deng, A., Song, Z., Zheng, C., et al. (2012). Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crops Research, 134, 193–199.

    Article  Google Scholar 

  •  Timmerman-Vaughan, G. M., Mills, A., Whitfield, C., Frew, T., Butler, R., Murray, S., Lakeman, M., McCallum, J.,  Russell, A., & Wilson, D. (2005) Linkage Mapping of QTL for Seed Yield, Yield Components, and Developmental Traits in Pea. Crop Science, 45(4):1336.

    Article  CAS  Google Scholar 

  • Trapero-Mozos, A., Morris, W. L., Ducreux, L. J. M., McLean, K., Stephens, J., Torrance, L., et al. (2018). Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnology Journal, 16(1), 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., Latif, M. A., & Oladosu, Y. (2014). Heat shock proteins: functions and response against heat stress in plants. International Journal of Scientific and Technology Research, 3(11), 204–218.

    Google Scholar 

  • Vignjevic, M., Wang, X., Olesen, J. E., & Wollenweber, B. (2015). Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Journal of Agronomy and Crop Science, 201(1), 32–48.

    Article  CAS  Google Scholar 

  • Vijayalakshmi, K., Fritz, A. K., Paulsen, G. M., Bai, G., Pandravada, S., & Gill, B. S. (2010). Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 26(2), 163–175.

    Article  CAS  Google Scholar 

  • Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46(2), 133–141.

    Article  CAS  Google Scholar 

  • Wang, X., Huang, W., Liu, J., Yang, Z., & Huang, B. (2017a). Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnology Journal, 15(2), 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Yan, B., Shi, M., Zhou, W., Zekria, D., Wang, H., et al. (2016). Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma, 253(3), 637–645.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., Yu, X., Mao, Y., Liu, Y., Liu, G., Liu, Y., et al. (2015). Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breeding, 134(4), 384–393.

    Article  CAS  Google Scholar 

  • Wang, M., Zou, Z., Li, Q., Xin, H., Zhu, X., Chen, X., et al. (2017b). Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Reports, 36(7), 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  • Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., et al. (2012). A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 C high temperature at seedling stage. Journal of Heredity, 104(2), 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Weng, M., Yang, Y. U. E., Feng, H., Pan, Z., Shen, W., Zhu, Y. A. N., et al. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant, Cell and Environment, 37(9), 2128–2138.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Luo, D., Vignols, F., & Jinn, T. (2012). Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant, Cell and Environment, 35(9), 1543–1557.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Weaver, D. B., Locy, R. D., McElroy, S., & van Santen, E. (2014). Identification of vegetative heat-tolerant upland cotton (Gossypium hirsutum L.) germplasm utilizing chlorophyll fluorescence measurement during heat stress. Plant Breeding, 133(2), 250–255.

    Article  CAS  Google Scholar 

  • Xin, H., Zhang, H., Zhong, X., Lian, Q., Dong, A., Cao, L., et al. (2017). Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell, Tissue and Organ Culture (PCTOC), 130(3), 617–629.

    Article  CAS  Google Scholar 

  • Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5), 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E., & Nguyen, H. T. (2000). Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 43(3), 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Wang, J., Bonos, S. A., Meyer, W. A., & Huang, B. (2018). Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences, 19(1), 116.

    Article  PubMed Central  CAS  Google Scholar 

  • Xu, Q., Xu, X., Shi, Y., Xu, J., & Huang, B. (2014). Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE, 9(7), e100792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue, G.-P., Sadat, S., Drenth, J., & McIntyre, C. L. (2013). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 65(2), 539–557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, K., Chen, N., Qu, Y., Dong, X., Meng, Q., & Zhao, S. (2008). Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. Journal of Integrative Plant Biology, 50(5), 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138(4), 2299–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002a). Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica, 125(2), 179–188.

    Article  CAS  Google Scholar 

  • Yang, J., Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002b). Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 126(2), 275–282.

    Article  CAS  Google Scholar 

  • Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., et al. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 225(3), 719–733.

    Article  CAS  PubMed  Google Scholar 

  • Ye, C., Tenorio, F. A., Argayoso, M. A., Laza, M. A., Koh, H.-J., Redoña, E. D., et al. (2015). Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 16(1), 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, E., Fan, C., Yang, Q., Li, X., Wan, B., Dong, Y., et al. (2014). Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS ONE, 9(7), e101914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, L., Yuan, Y., Liu, S., Wang, J., Zhu, S., Chen, G., et al. (2017). Influence of high temperature on photosynthesis, antioxidative capacity of chloroplast, and carbon assimilation among heat-tolerant and heat-susceptible genotypes of nonheading Chinese cabbage. HortScience, 52(11), 1464–1470.

    Article  Google Scholar 

  • Zang, X., Geng, X., Wang, F., Liu, Z., Zhang, L., Zhao, Y., et al. (2017). Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 17(1), 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarei, B., Naderi, A., Jalal Kamali, M. R., Lack, S., & Modhej, A. (2013). Determination of physiological traits related to terminal drought and heat stress tolerance in spring wheat genotypes. International Journal of Agriculture and Crop Sciences, 5(21), 2511–2520.

    Google Scholar 

  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., et al. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal, 44(3), 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Chen, H., Wang, H., Li, B., Yi, Y., Kong, F., et al. (2016). Constitutive expression of a tomato small heat shock protein gene LeHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco. Plant Molecular Biology Reporter, 34(2), 399–409.

    Article  CAS  Google Scholar 

  • Zhang, K., Ezemaduka, A. N., Wang, Z., Hu, H., Shi, X., Liu, C., et al. (2015). A novel mechanism for small heat shock proteins to function as molecular chaperones. Scientific Reports, 5, 8811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Geng, X., Zhang, H., Zhou, C., Zhao, A., Wang, F., et al. (2017a). Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). Journal of Plant Biology, 60(1), 57–65.

    Article  CAS  Google Scholar 

  • Zhang, H., Liang, W., Yang, X., Luo, X., Jiang, N., Ma, H., et al. (2010). Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell, 22(3), 672–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.-J., Zhou, L.-Y., Bai, Y.-X., Yi, W.-B., Cu, K., Nie, X., et al. (2017b). Development of plant expression vector with Taq DNA polymerase gene to yield heat-tolerant maize lines. International Journal of Agriculture and Biology, 19(3), 523.

    Article  Google Scholar 

  • Zheng, H. J., Wu, A. Z., Zheng, C. C., Wang, Y. F., Cai, R., Shen, X. F., et al. (2009). QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breeding, 128(1), 54–62.

    Article  CAS  Google Scholar 

  • Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C.-O., & Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1–11.

    Article  CAS  Google Scholar 

  • Zhu, X., Thalor, S. K., Takahashi, Y., Berberich, T., & Kusano, T. (2012). An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant, Cell and Environment, 35(11), 2014–2030.

    Article  CAS  PubMed  Google Scholar 

  • Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The first author (MP) is thankful to CSIR-UGC, New Delhi, India, for financial support in the form of a fellowship. The corresponding author (HN) is thankful to UGC, CSIR, DST, New Delhi (for PURSE grant), University of Western Australia, Australia, DST (India), DEST (Australia), ICARDA, Morocco, World Vegetable Center (at ICRISAT) for financially supporting our work on heat stress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Nayyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, M., Siddique, K.H.M., Dhankhar, O.P. et al. Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops. Ind J Plant Physiol. 23, 697–720 (2018). https://doi.org/10.1007/s40502-018-0427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0427-z

Keywords

Navigation