Skip to main content

Advertisement

Log in

A simple, inexpensive, scalable and low maintenance hydroponics system for growing halophyte: Lepidium sativum L. (Brassicaceae), ideal for manipulating salt stress and inferring gene expression levels

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Soil salinity is a serious problem that limits productivity and survival of plants. Arabidopsis thaliana has served as a model plant to study different aspects of plant physiology and molecular genetics. However, its glycophytic nature, makes it unsuitable for salinity stress studies as it does not survive high dosage of salinity for extended periods. Moreover, the mechanisms of salt tolerance may be more evolved and possible different in halophytes. Hence, halophytes are better suited for such studies. With this background, the present investigation was initiated with the objectives of finding a suitable halophytic close relative of A. thaliana which may enable a better understanding of salt tolerance mechanisms. The present report describes the establishment of Lepidium sativum L. as a suitable halophyte for undertaking molecular physiology experiments under salt stress conditions. An efficient yet simple hydroponic culture system for L. sativum developed under the present investigation along with growth performance of the plant at varying levels of NaCl treatments (0–200 mM concentration) is also reported, showcasing its effective use in giving salt treatments that are amicable to any molecular biology laboratory involved in study of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. FAO Soils Bulletin, 39, 131.

    Google Scholar 

  • Alatorre-Cobos, F., Calderón-Vázquez, C., Ibarra-Laclette, E., Yong-Villalobos, L., Pérez-Torres, C. A., Oropeza-Aburto, A., et al. (2014). An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions. BMC Plant Biology, 14, 69.

    Article  Google Scholar 

  • Arteca, R. N., & Arteca, J. M. (2000). A novel method for growing Arabidopsis thaliana plants hydroponically. Physiologia Plantarum, 108, 188–193.

    Article  CAS  Google Scholar 

  • Atwell, B. J., Kriedemann, P. E., Turnbull, C. G. N., Eamus, D., & Bieleski, R. L. (1999). Plants in action-adaptation in nature, performance in cultivation. Australian Society of Plant Scientists, New Zealand Society of Plant Biologists & New Zealand Institute of Agricultural and Horticultural Science (Vol. 8, p. 664). Southyarra: Macmillan education of Australia.

    Google Scholar 

  • Benina, M., Obata, T., Mehterov, N., Ivanov, I., Petrov, V., Toneva, V., et al. (2013). Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 4, 449.

    Article  Google Scholar 

  • Dassanayake, M., Oh, D. H., Haas, J. S., Hernandez, A., Hong, H., Ali, S., et al. (2011). The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 43, 913–920.

    Article  CAS  Google Scholar 

  • Dittami, S. M., & Tonon, T. (2012). Genomes of extremophile crucifers: New platforms for comparative genomics and beyond. Genome Biology, 13, 166.

    Article  Google Scholar 

  • Epstein, E., & Bloom, A. J. (2005). Mineral nutrition of plants: principles and perspectives (2nd ed., p. 405). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytology, 179, 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61, 313–337.

    Article  Google Scholar 

  • Fougere, F., Rudulier, D. Le, & Streeter, J. G. (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96, 1228–1236.

    Article  CAS  Google Scholar 

  • Gibeaut, D. M., Hulett, J., Cramer, G. R., & Seemann, J. R. (1997). Maximal biomass of Arabidopsis thaliana using a simple, low maintenance hydroponic method and favorable environmental conditions. Plant Physiology, 115, 317–319.

    Article  CAS  Google Scholar 

  • Gong, Q., Li, P., Ma, S., Rupassara, I., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophile in comparison with its relative Arabidopsis thaliana. Plant Journal, 44, 826–839.

    Article  CAS  Google Scholar 

  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. (1950). Circular. California Agricultural Experiment Station, 347(2nd edit), 32.

    Google Scholar 

  • Jennings, D. H. (1968). Halophytes, succulence and sodium in plants—a unified theory. New Phytologist, 67, 899–911.

    Article  CAS  Google Scholar 

  • Jeschke, W. D. (1984). K+–Na+ exchanges in cellular membranes, intracellular compartmentation of cations, and salt tolerance. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in plants. strategies for crop improvement (pp. 37–66). New York: Wiley.

    Google Scholar 

  • Kittiwongwattana, C., & Vuttipongchaikij, S. (2013). Effects of nutrient media on vegetative growth of Lemna minor and Landoltia punctate during in vitro and ex vitro cultivation. Maejo International Journal of Science and Technology, 7(01), 60–69.

    Google Scholar 

  • Koch, M. A., & German, D. A. (2013). Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers in Plant Science, 4, 267.

    Article  Google Scholar 

  • Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics, 23(10), 1289–1291.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiologycal Plantarun, 15, 473–497.

    Article  CAS  Google Scholar 

  • Norén, H., Svensson, P., & Andersson, B. (2004). A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiologia Plantarum, 121, 343–348.

    Article  Google Scholar 

  • Rengasamy, P. (2006a). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.

    Article  CAS  Google Scholar 

  • Rengasamy, P. (2006b). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023.

    Article  CAS  Google Scholar 

  • Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37, 613–620.

    Article  Google Scholar 

  • Robison, M. M., Smid, M. P. L., & Wolyn, D. J. (2006). High-quality and homogeneous Arabidopsis thaliana plants from a simple and inexpensive method of hydroponic cultivation. Canadian Journal of Botany, 84, 1009–1012.

    Article  Google Scholar 

  • Ruan, C. J., Teixeira da Silva, J. A., Mapper, S., Qin, P., & Lutts, S. (2010). Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 29, 329–359.

    Article  CAS  Google Scholar 

  • Sambrook, J., & Russell, D. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schlesier, B., Bréton, F., & Mock, H. P. (2003). A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Molecular Biology Reporter, 21, 449–456.

    Article  CAS  Google Scholar 

  • Shabala, S., & MacKay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.

    Article  CAS  Google Scholar 

  • Smeets, K., Ruytinx, J., vanBelleghem, F., Semane, B., Lin, D., Vangronsveld, J., et al. (2008). Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiology and Biochemistry, 46, 212–218.

    Article  CAS  Google Scholar 

  • Taji, T., Komatsu, K., Katori, T., Kawasaki, Y., Sakata, Y., Tanaka, S., et al. (2010). Comparative genomic analysis of 1047 completely sequenced cdnas from an arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biology, 10, 261.

    Article  Google Scholar 

  • Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl transport contributing to salt tolerance. Plant, Cell and Environment, 33, 566–589.

    Article  CAS  Google Scholar 

  • Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., et al. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biology, 3, 2.

    Article  Google Scholar 

  • Toda, T., Koyama, H., & Hara, T. (1999). A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 63, 210–212.

    Article  CAS  Google Scholar 

  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., et al. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115.

    Article  CAS  Google Scholar 

  • Upasani, U., & Desai, S. (1990). Sambhar salt lake—chemical composition of brines and studies on haloalkaliphilic archaebacteria. Archives of Microbiology, 154(6), 589–593.

    Article  CAS  Google Scholar 

  • Vera-Estrella, R., Barkla, B. J., & Pantoja, O. (2014). Comparative 2D-dige analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Journal of Proteomics, 111, 113–127.

    Article  CAS  Google Scholar 

  • Waisel, Y. (1972). The biology of halophytes (p. 410). New York: Academic Press.

    Google Scholar 

  • Wu, H. J., Zhang, Z., Wang, J. Y., Oh, D. H., Dassanayake, M., Liu, M. B., et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America, 109, 12219–12224.

    Article  CAS  Google Scholar 

  • Yu, B., & Li, W. (2014). Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its relative Arabidopsis thaliana. Phytochemistry, 108, 77–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Indian Council of Forestry Research and Education (ICFRE), Dehradun—an autonomous body under Ministry of Environment, Forest and Climate Change, Government of India, New Delhi for the project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kant.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B., Kant, T. A simple, inexpensive, scalable and low maintenance hydroponics system for growing halophyte: Lepidium sativum L. (Brassicaceae), ideal for manipulating salt stress and inferring gene expression levels. Ind J Plant Physiol. 23, 760–771 (2018). https://doi.org/10.1007/s40502-018-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0422-4

Keywords

Navigation