Skip to main content
Log in

Genetic engineering for salt and drought stress tolerance in peanut (Arachis hypogaea L.)

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Peanut (Arachis hypogaea L.) is an important oil-yielding cash crop as well as an exportable agricultural commodity. It is a rich source of proteins, fats, and plays a crucial role in oilseed economy of India and many other countries. Peanut frequently encounters water-deficit and soil salinity conditions that affect its growth and productivity. Traditional breeding methods were not successful in generating lines tolerant to abiotic stress conditions. On the other hand, introduction of genes through genetic engineering methods conferred tolerance against both biotic and abiotic stresses. In all, the transgenics that were developed so far, stable inheritance of transgenes was noticed. Transgenics displayed higher biomass, yield and better resistance to abiotic stresses when compared with wild-type plants inferring that this method has potential for improving the crop with desired traits. Genetically engineered stress tolerant peanut plants could provide an avenue to the restoration of farmlands lost due to severe drought or salinity conditions and highlight the potential of this technology for developing climate resilient crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amareshwari, P. (2017). Overexpression of Sorghum bicolor vacuolar H+ pyrophosphatase (SbVPPase) to improve salt and drought stress tolerance in peanut (Arachis hypogaea L.). Thesis submitted to the Osmania University, Hyderabad for the award of Ph. D. Degree.

  • Asif, M. A., Zafar, Y., Iqbal, J., Iqbal, M. M., Rashid, U., Ali, G. M., et al. (2011). Enhanced expression of AtNHX1, in transgenic peanut (Arachis hypogaea L.) improves salt and drought tolerance. Molecular Biotechnology, 49, 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Banavath, J. N., Chakradhar, T., Pandit, V., Konduru, S., Guduru, K. K., Akila, C. S., et al. (2018). Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers Chemistry, 6, (34). https://doi.org/10.1038/nrmicro280.

    Article  Google Scholar 

  • Banjara, M., Zhu, L., Shen, G., Payton, P., & Zhang, H. (2012). Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnology Reports, 6, 59–67.

    Article  Google Scholar 

  • Ben Romdhane, W., Ben-Saad, R., Meynard, D., Verdeil, J. L., Azaza, J., Zouari, N., et al. (2017). Ectopic expression of Aeluropus littoralis plasma membrane protein gene ALTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. International Journal of Molecular Sciences, 18(4), 692. https://doi.org/10.3390/ijms18040692.

    Article  CAS  PubMed Central  Google Scholar 

  • Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V., Serraj, R., et al. (2007). Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26, 2071–2082.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur, P., Devi, J. M., Serraj, R., Yamaguchi-Shinozaki, K., Vadez, V., & Sharma, K. K. (2004). Evaluation of transgenic peanutlines under water limited conditions. International Arachis Newsletter, 24, 33–34.

    Google Scholar 

  • Bhatnagar-Mathur, P., Rao, J. S., Vadez, V., Dumbala, S. R., Rathore, A., Yamaguchi-Shinozaki, K., et al. (2014). Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding, 33, 327–340.

    Article  CAS  Google Scholar 

  • Bhauso, T. D., Radhakrishnan, T., Kumar, A., Mishra, G. P., Dobaria, J. R., Patel, K., et al. (2014). Overexpression of bacterial mtlDgene in peanut improves drought tolerance through accumulation of mannitol. The Scientific World Journal. https://doi.org/10.1155/2014/125967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosamia, T. C., Mishra, G. P., Thankappan, R., & Dobaria, J. R. (2015). Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One, 10(6), e0129127. https://doi.org/10.1371/journal.pone.0129127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Yang, Q., Wang, T., Chen, N., Pan, L., Chi, X., et al. (2015). Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Canadian Journal of Plant Science, 95, 735–744.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Basu, A., & Kundu, S. (2017). Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.00410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eapen, S., & George, L. (1994). Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Reports, 13, 582–586.

    Article  CAS  PubMed  Google Scholar 

  • Feng, S., Wang, X., Zhang, X., Dang, P. M., Holbrook, C. C., Culbreath, A. K., et al. (2012). Peanut (Arachis hypogaea L) expressed sequence tag project: Progress and application. Comparative and Functional Genomics. https://doi.org/10.1155/2012/373768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaxiola, R. A., Fink, G. R., & Hirschi, K. D. (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiology, 129, 967–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan, M., Akram, Z., Ali, S., Ali, G. M., Zafar, Y., Shah, Z. H., et al. (2016). Whisker-mediated transformation of peanut with chitinase gene enhances resistance to leaf spot disease. Crop Breeding and Applied Biotechnology, 16(2), 108–114. https://doi.org/10.1590/1984-70332016v16n2a17.

    Article  CAS  Google Scholar 

  • He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., et al. (2005). Expression of an Arabidopsis vacuolar sodium proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Biotechnology Reports, 46, 1848–1854.

    CAS  Google Scholar 

  • Holbrook, C. C., Ozias-Akins, P., Chu, Y., & Guo, B. (2011). Impact of molecular genetic research on peanut cultivar development. Agronomy, 1, 3–17.

    Article  Google Scholar 

  • Janila, P., Nigam, S. N., Pandey, M. K., Nagesh, P., & Varshney, R. K. (2013). Groundnut improvement: Use of genetic and genomic tools. Frontiers in Plant Genetics and Genomic, 4, 1–16.

    Google Scholar 

  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., et al. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.01029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiranmai, K., Lokanadha Rao, G., Pandurangaiah, M., Nareshkumar, A., Amaranatha Reddy, V., Lokesh, U., et al. (2018). A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.00346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, X., Pan, J., Zhang, M., Xing, X., Zhou, Y., Liu, Y., et al. (2011). ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell and Environment, 34(8), 1291–1303. https://doi.org/10.1111/j.1365-3040.2011.02329.x.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Song, Y., Xing, F., Wang, N., Wen, F., & Zhu, C. (2016). GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 253(5), 1265–1281. https://doi.org/10.1007/s00709-015-0885-3.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, D. M., & Birch, R. G. (1995). Plant regeneration and microprojectile-mediated gene transfer in embryonic leaflets of peanut (Arachis hypogaea L.). Australian J Plant Physiology, 22, 585–591.

    CAS  Google Scholar 

  • Martinez-Beltran, J., & Manzur, C. L. (2005). Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the international salinity forum (pp. 311–313). Riverside, California, USA.

  • Melvin, P., Bankapalli, K., D’Silva, P., & Shivaprasad, P. V. (2017). Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Molecular Biology, 94(4–5), 381–397. https://doi.org/10.1007/s11103-017-0613-9.

    Article  CAS  PubMed  Google Scholar 

  • Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D. T., Lee, O., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 100(1), 358–363. https://doi.org/10.1073/pnas.252641899.

    Article  CAS  Google Scholar 

  • Mungala, A. J., Radhakrishnan, T., & Dobaria, J. R. (2008). In vitro Screening of 123 Indian peanut cultivars for sodium chloride induced salinity tolerance. World Journal of Agricultural Sciences, 4, 574–582.

    Google Scholar 

  • Nautiyal, P. C., Bandyopadhyay, A., Koradia, V. G., & Makad, M. (2000). Performance of groundnut germplasm and cultivars under saline water irrigation in the soils of Mundra in Gujarat, India. International Arachis Newsletter, 20, 80–82.

    Google Scholar 

  • Ozias-Akins, P., Schnall, J. A., Anderson, W. F., Singsit, C., Clemente, T. E., Adang, M. J., et al. (1993). Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Science, 93, 185–194.

    Article  CAS  Google Scholar 

  • Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., et al. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences USA, 102, 18830–18835.

    Article  CAS  Google Scholar 

  • Peleg, Z., Reguera, M., Walia, H., & Blumwald, E. (2011). Cytokinin mediated source-sink modifications improve drought tolerance and increases grain yield in rice under water stress. Plant Biotechnology Journal, 9, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Pruthvi, V., Narasimhan, R., & Nataraja, K. N. (2014). Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One, 9(12), e111152. https://doi.org/10.1371/journal.pone.0111152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, H., Gu, Q., Kuppu, S., Sun, L., Zhu, X., Mishra, N., et al. (2013). Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnology Reports, 7, 345–355.

    Article  Google Scholar 

  • Qin, H., Gu, Q., Zhang, J., Sun, L., Kuppu, S., Zhang, Y., et al. (2011). Regulated expression of isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiology, 52, 1904–1914.

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda, V., Senthil-kumar, M., Udayakumar, M., & Mysore, K. S. (2013). A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 13(1), 193. https://doi.org/10.1186/1471-2229-13-193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana, K., & Mohanty, I. C. (2012). In vitro regeneration and genetic transformation in peanut (Arachis hypogaea L. cv. Smruti) for abiotic stress tolerance mediated by Agrobacterium tumifaciens. Journal of Today’s Biological Sciences: Research and Review, 1, 62–85.

    Google Scholar 

  • Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431–449.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507. https://doi.org/10.1371/journal.pone.0110507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science, 7, 935. https://doi.org/10.3389/fpls.2016.00935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., et al. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 161(5), 1089–1100. https://doi.org/10.1016/j.cell.2015.04.024.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K.K., & Anjaiah, V.V. (2000). An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Science, 159(1), 7–19.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., Issar, D., Zala, P. V., & Nautiyal, P. C. (2007). Variation in sensitivity to salinity in groundnut cultivars during seed germination and early seedling growth. Journal of SAT Agricultural Research, 5(1), 1–7.

    Google Scholar 

  • Smart, C. M., Scofield, S. R., Bevan, M. W., & Dyer, T. A. (1991). Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell, 3, 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan, S. (2018). Single-gene versus multigene transfer approaches for crop salt tolerance. In V. Kumar, S. Wani, P. Suprasanna, & L. S. Tran (Eds.), Salinity responses and tolerance in plants (Vol. 1, pp. 213–234). Cham: Springer.

    Google Scholar 

  • Vadez, V., Rao, S., Sharma, K. K., Bhatnagar-Mathur, P., & Devi, M. J. (2007). DREB1A allows for more water uptake in peanut by a large modification in the root/shoot ratio under water deficit. Journal of SAT Agricultural Research, 5(1), 1–5.

    Google Scholar 

  • Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 23, 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh, K. (2016). Development of transgenic peanut (Arachis hypogaea L.) lines by overexpression of Na+/H+ antiporter gene (SbSOS1) for enhanced salt tolerance. Thesis submitted to the Osmania University, Hyderabad for the award of Ph. D. Degree.

  • Venkatesh, K., Rani, A., Amareshwari, R. P., & Katam, R. (2014). Applications of bioinformatics tools to genetic mapping and diversity in peanut. In N. Mallikarjun & R. Varshney (Eds.), Genetics genomics and breeding of peanuts (pp. 216–231). Boca Raton: CRC Press. https://doi.org/10.1201/b16872-15.

    Chapter  Google Scholar 

  • Wang, R. K., Li, L. L., Cao, Z. H., Zhao, Q., Li, M., Zhang, L. Y., et al. (2012). Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology, 79(1–2), 123–135. https://doi.org/10.1007/s11103-012-9899-9.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Deng, K., Liu, D., Gao, Y., Liu, Y., Yang, M., et al. (2016). Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant and Cell Physiology, 57(8), 1593–1609. https://doi.org/10.1093/pcp/pcw084.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Puppala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavi Kishor, P.B., Venkatesh, K., Amareshwari, P. et al. Genetic engineering for salt and drought stress tolerance in peanut (Arachis hypogaea L.). Ind J Plant Physiol. 23, 647–652 (2018). https://doi.org/10.1007/s40502-018-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0421-5

Keywords

Navigation