Skip to main content
Log in

Forward genetics using radiation hybrids (deletion mutants) in plants

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Identification of the QTL/genes associated with traits of interest determines the successful application of those genes for crop improvement. After identification of QTL, fine mapping and cloning of important QTL can also enhance our understanding of the genetic structure of the underlying genes responsible for the phenotypic variation. Genetic or recombination mapping is the most common approach used to identify, map and clone QTL or genes in plants. However, genetic mapping approach for fine mapping or map-based cloning is associated with many drawbacks including the need of developing a homogenous and large population, the availability of polymorphic markers, and the poor recombination in certain chromosomal regions. In this article, we describe an alternative approach, called radiation hybrid (RH) mapping, for forward genetic studies in plants. This approach has been extensively used in animal system and offer greater prospects for forward genetic studies in plants as well. The RH mapping uses radiation induced chromosomal breaks to map markers, and thus offers many advantages compared to traditionally used genetic mapping approach, particularly for loci located in recombination cold spots and for the traits which lack genetic diversity. Here, we reviewed the progress made in application of RH approach for forward genetics in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., et al. (2006). Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theoretical and Applied Genetics, 113, 1409–1420.

    Article  CAS  Google Scholar 

  • Balcárková, B., Frenkel, Z., Škopová, M., Abrouk, M., Kumar, A., Chao, S., et al. (2017). A high resolution radiation hybrid map of wheat chromosome 4A. Frontiers in Plant Science, 7, 2063. https://doi.org/10.3389/fpls.2016.02063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassi, F. M., Ghavami, F., Hayden, M. J., Wang, Y., Forrest, K. L., Kong, S., et al. (2016). Fast-forward genetics by radiation hybrids to saturate the locus regulating nuclear-cytoplasmic compatibility in Triticum. Plant Biotechnology Journal, 14, 1716–1726.

    Article  CAS  Google Scholar 

  • Bassi, F. M., Kumar, A., Zhang, Q., Paux, E., Huttner, E., Kilian, A., et al. (2013). Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theoretical and Applied Genetics, 126(8), 1977–1990.

    Article  CAS  Google Scholar 

  • Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., et al. (2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theoretical and Applied Genetics, 104, 84–91.

    Article  CAS  Google Scholar 

  • Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D., et al. (2003). Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theoretical and Applied Genetics, 107, 503–508.

    Article  CAS  Google Scholar 

  • Buerstmayr, M., Steiner, B., Wagner, C., Schwarz, P., Brugger, K., Barabaschi, D., et al. (2018). High-resolution mapping of the pericentromeric region on wheat chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A. Plant Biotechnology Journal, 16, 1046–1056.

    Article  CAS  Google Scholar 

  • Chapman, J. A., Mascher, M., Bulucc, A., Barry, K., Georganas, E., Session, A., et al. (2015). A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16, 26.

    Article  Google Scholar 

  • Devos, K. M., Sorrells, M. E., Anderson, J. A., Miller, T. E., Reader, S. M., Lukaszewski, A. J., et al. (1999). Chromosome aberrations in wheat nullisomic-tetrasomic and ditelosomic lines. Cereal Research Communication, 27, 231–239.

    CAS  Google Scholar 

  • Erayman, M., Sanduh, D., Sidhu, D., Dilbirligi, M., Baenziger, P. S., & Gill, K. S. (2004). Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research, 32, 3546–3565.

    Article  CAS  Google Scholar 

  • Gadaleta, A., Giancaspro, A., Nigro, D., Giove, S. L., Incerti, O., Simeone, R., et al. (2014). A new genetic and deletion map of wheat chromosome 5A to detect candidate genes for quantitative traits. Molecular Breeding, 34, 1599–1611.

    Article  Google Scholar 

  • Gao, W., Chen, Z. J., Yu, J. Z., Kohel, R. J., Womack, J. E., & Stelly, D. M. (2006). Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome. Molecular Genetics and Genomics, 275, 105–113.

    Article  CAS  Google Scholar 

  • Gao, W., Chen, Z. J., Yu, J. Z., Raska, D., Kohel, R. J., Womack, J. E., et al. (2004). Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics, 167, 1317–1329.

    Article  CAS  Google Scholar 

  • Goss, S. J., & Harris, H. (1975). New method for mapping genes in human chromosomes. Nature, 255, 680–684.

    Article  CAS  Google Scholar 

  • Haenel, Q., Laurentino, T. G., Roesti, M., & Berner, D. (2018). Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Molecular Ecology, 27, 2477–2497.

    Article  Google Scholar 

  • Haider, N. (2012). Evidence for the origin of the B genome of bread wheat based on chloroplast DNA. Turkish Journal of Agriculture and Forestry, 36, 13–25.

    CAS  Google Scholar 

  • Hossain, K. G., Riera-lizarazu, O., Kalavacharla, V., Vales, M. I., Maan, S. S., & Kianian, S. F. (2004). Radiation hybrid mapping of the species cytoplasm-specific (scs ae) gene in wheat. Genetics, 168, 415–423.

    Article  CAS  Google Scholar 

  • Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K., et al. (2012). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol Journal, 10, 826–839.

    Article  CAS  Google Scholar 

  • Kalavacharla, V., Hossain, K., Gu, Y., Riera-Lizarazu, O., Vales, M. I., Bhamidimarri, S., et al. (2006). High-resolution radiation hybrid map of wheat chromosome 1D. Genetics, 173, 1089–1099.

    Article  CAS  Google Scholar 

  • Kilian, B., Ozkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., et al. (2007). Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Molecular Biology and Evolution, 24, 217–227.

    Article  CAS  Google Scholar 

  • Kobayashi, F., Wu, J., Kanamori, H., Tanaka, T., Katagiri, S., Karasawa, W., et al. (2015). A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics, 16, 595.

    Article  Google Scholar 

  • Kumar, A., Bassi, F. M., Michalack de Jimenez, M., Ghavami, F., Mazaheri, M., et al. (2014). Radiation hybrids: A valuable tool for genetic, genomic and functional analysis of plant genomes. In R. Tuberosa, A. Graner, & E. Frison (Eds.), Genomics of plant genetic resources (pp. 285–318). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kumar, A., Bassi, F. M., Paux, E., Al-Azzam, O., Michalak de Jimenez, M., Denton, A. M., et al. (2012a). DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics, 13, 339.

    Article  CAS  Google Scholar 

  • Kumar, A., Seetan, R., Mergoum, M., Tiwari, V. K., Iqbal, M. J., Wang, Y., et al. (2015). Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics, 16, 800.

    Article  Google Scholar 

  • Kumar, A., Simons, K., Iqbal, M. J., de Jiménez, M., Bassi, F. M., Ghavami, F., et al. (2012b). Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii accession AL8/78. BMC Genomics, 13, 597.

    Article  CAS  Google Scholar 

  • Kynast, R. G., Okagaki, R. J., Galatowitsch, M. W., Granath, S. R., Jacobs, M. S., Stecet, A. O., et al. (2004). Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proceedings of The National Academy of Sciences of the USA, 101, 9921–9926.

    Article  CAS  Google Scholar 

  • Kynast, R. G., Okagaki, R. J., Rines, H. W., & Phillips, R. L. (2002). Maize individualized chromosome and derived radiation hybrid lines and their use in functional genomics. Functional & Integrative Genomics, 2, 60–69.

    Article  CAS  Google Scholar 

  • Lukowitz, W., Gillmor, C. S., & Scheible, W. R. (2000). Positional cloning in arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiology, 123, 795–805.

    Article  CAS  Google Scholar 

  • Luo, M. C., Gu, Y. Q., You, F. M., Deal, K. R., Ma, Y., Hu, Y., et al. (2013). A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceedings of The National Academy of Sciences of the USA, 110, 7940–7945.

    Article  CAS  Google Scholar 

  • Maan, S. S. (1992). Transfer of a species specific cytoplasm (scs) from Triticum timopheevii to T. turgidum. Genome, 35, 238–243.

    Article  Google Scholar 

  • Maan, S. S., Joppa, L. R., & Kianian, S. F. (1999). Linkage between the centromere and a gene producing nucleocytoplasmic compatibility in durum wheat. Crop Science, 39, 1044–1048.

    Article  Google Scholar 

  • Mazaheri, M., Kianian, P. M. A., Kumar, A., Mergoum, M., Seetan, R., Soltani, A., et al. (2015). Radiation hybrid map of barley 1 chromosome 3H. The Plant Genome, 8. https://doi.org/10.3835/plantgenome2015.02.0005.

  • Michalak de Jimenez, M. K., Bassi, F. M., Ghavami, F., Simons, K., Dizon, R., Seetan, R. I., et al. (2013). A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Functional & Integrative Genomics, 13, 19–32.

    Article  CAS  Google Scholar 

  • Peters, J. L., Crude, F., & Gerats, T. (2003). Forward genetics and map-based cloning approaches. Trends in Plant Science, 8, 484–491.

    Article  CAS  Google Scholar 

  • Riera-Lizarazu, O., Leonard, J. M., Tiwari, V. K., & Kianian, S. F. (2010). A method to produce radiation hybrids for the D-genome chromosomes of wheat (Triticum aestivum L.). Cytogenetic and Genome Research, 129, 234–240.

    Article  CAS  Google Scholar 

  • Riera-Lizarazu, O., Vales, M. I., Ananiev, E. V., Rines, H. W., & Phillips, R. L. (2000). Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 156, 327–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saintenac, C., Falque, M., Martin, O. C., Paux, E., Feuillet, C., & Sourdille, P. (2009). Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics, 181, 393–403.

    Article  CAS  Google Scholar 

  • Salvi, S., & Tuberosa, R. (2005). To clone or not to clone plant QTLs: Present and future challenges. Trends in Plant Science, 10, 297–304.

    Article  CAS  Google Scholar 

  • Sears, E. R. (1954). The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin, 572, 1–58.

    Google Scholar 

  • Singh, R., Matus-Cadiz, M., Baga, M., Hucl, P., & Chibbar, R. N. (2010). Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 174, 391–408.

    Article  CAS  Google Scholar 

  • Sorrells, M. E., Gustafson, J. P., Somers, D., Chao, S., Benscher, D., Guedira-Brown, G., et al. (2011). Reconstruction of the synthetic W7984 × Opata M85 wheat reference population. Genome, 54, 875–882.

    Article  Google Scholar 

  • Tiwari, V. K., Heesacker, A., Riera-Lizarazu, O., Gunn, H., Wang, S., Wang, Y., et al. (2016). A whole-genome, radiation hybrid mapping resource of hexaploid wheat. The Plant Journal, 86, 195–207.

    Article  CAS  Google Scholar 

  • Tiwari, V. K., Riera-Lizarazu, O., Gunn, H. L., Lopez, K., Iqbal, M. J., Kianian, S. F., et al. (2012). Endosperm tolerance of paternal aneuploidy allows radiation-hybrid mapping of the wheat D-genome and a measure of γ-ray induced chromosome breaks. PLoS ONE, 7, e48815.

    Article  CAS  Google Scholar 

  • Tsunewaki, K. (1980). Genetic diversity of the cytoplasm in Triticum and Ae (pp. 49–100). Japan Society for the promotion of science 5-3-1 Kojimachi, Chiyodaku, Tokyo, Japan.

  • Tsunewaki, K. (2009). Plasmon analysis in the TriticumAegilops complex. Breeding Science, 59, 455–470.

    Article  CAS  Google Scholar 

  • Walter, M. A., Spillet, D. J., Thomas, P., Weissenbach, J., & Goodfellow, P. N. (1994). A method for constructing radiation hybrid maps of whole genomes. Nature Genetics, 7, 22–28.

    Article  CAS  Google Scholar 

  • Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787–796.

    Article  CAS  Google Scholar 

  • Wang, Y. Y., Sun, X. Y., Zhao, Y., Kong, F. M., Guo, Y., Zhang, G. Z., et al. (2011). Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. Plant Science, 181, 65–75.

    Article  CAS  Google Scholar 

  • Zhirov, E. G., Bessarab, K. S., & Gubanova, M. A. (1974). Genetic studies on partial desynapsis in soft wheat. Soviet Genetics, 9, 10–18.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Jain, S. Forward genetics using radiation hybrids (deletion mutants) in plants. Ind J Plant Physiol. 23, 622–629 (2018). https://doi.org/10.1007/s40502-018-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0419-z

Keywords

Navigation