Skip to main content
Log in

Drought responsive transcriptome profiling in roots of contrasting rice genotypes

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Drought avoidance is an important strategy exhibited by cereals for maintaining productivity under water deficit conditions. Most of the modern rice varieties stop their root growth during drought whereas few traditional cultivars have the ability to maintain root growth. An upland rice genotype Nootripathu was found to maintain its root growth under drought when compared to a shallow rooted IR20. Drought responsive transcriptome profiling of roots of IR20 and Nootripathu revealed that tolerant Nootripathu showed relatively more number of DEGs (4287) than susceptible IR20 (3081). Drought stress significantly affected expression of genes encoding cellulose synthases and expansins, two major gene families involved formation of cell walls in the shallow rooted drought susceptible genotype IR20. Genes involved in the biosynthesis of phytohormones namely ABA and Brassinosteroids were found to be significantly up-regulated in roots of Nootripathu during drought. Up-regulation of autophagy related genes involved in degradation of denatured/misfolded proteins in roots of IR20 indicates the severe progression of stress in IR20. Co-localization analysis of DEGs against QTL hotspots identified several putative candidate genes including a zinc finger domain containing protein, a bZIP transcription factor, a MYB factor and an OsMADS7 requiring further functional validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal, P., & Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum, 54, 201–212.

    Article  CAS  Google Scholar 

  • Agre, P. (2006). The aquaporin water channels. Proceedings of the American Thoracic Society, 3, 5–13.

    Article  CAS  Google Scholar 

  • Ali, M., Pathan, M., Zhang, J., Bai, G., Sarkarung, S., & Nguyen, H. (2000). Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theoretical and Applied Genetics, 101, 756–766.

    Article  CAS  Google Scholar 

  • Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 65, 3799–3811.

    Article  Google Scholar 

  • Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., et al. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169, 1382–1396.

    Article  Google Scholar 

  • Babu, R. C., Shashidhar, H. E., Lilley, J. M., Thanh, N. D., Ray, J. D., Sadasivam, S., et al. (2001). Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breeding, 120, 233–238.

    Article  Google Scholar 

  • Baker, J., Van dennSteele, C., & Dure, L. (1988). Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Molecular Biology, 11, 277–291.

    Article  CAS  Google Scholar 

  • Baldoni, E., Genga, A., & Cominelli, E. (2015). Plant MYB transcription factors: Their role in drought response mechanisms. International Journal of Molecular Sciences, 16, 15811–15851.

    Article  CAS  Google Scholar 

  • Bao, Y., Kost, B., & Chua, N. H. (2001). Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. The Plant Journal, 28, 145–157.

    Article  CAS  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A reexamination of relative turgidity for estimating the water deficits in leaves. Australian Journal of Biological Sciences, 15, 413–428.

    Article  Google Scholar 

  • Blum, A. (1989). Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science, 29, 230–233.

    Article  Google Scholar 

  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., et al. (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports, 26, 2017–2026.

    Article  CAS  Google Scholar 

  • Carol, R. J., & Dolan, L. (2002). Building a hair: Tip growth in Arabidopsis thaliana root hairs. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357, 815–821.

    Article  CAS  Google Scholar 

  • Chaiwanon, J., & Wang, Z.-Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Current Biology, 25, 1031–1042.

    Article  CAS  Google Scholar 

  • Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90, 856–867.

    Article  CAS  Google Scholar 

  • Close, T. J. (1997). Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiologia Plantarum, 100, 291–296.

    Article  CAS  Google Scholar 

  • Comas, L. H., Becker, S. R., Von Mark, V. C., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2013.00442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosgrove, D. J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Biology, 50, 391–417.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature, 407, 321.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850.

    Article  CAS  Google Scholar 

  • Cui, K., Peng, S., Xing, Y., Xu, C., Yu, S., & Zhang, Q. (2002). Molecular dissection of seedling-vigor and associated physiological traits in rice. Theoretical and Applied Genetics, 105, 745–753.

    Article  CAS  Google Scholar 

  • Dixit, S., Singh, A., Cruz, M. T. S., Maturan, P. T., Amante, M., & Kumar, A. (2014). Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genetics, 15, 16.

    Article  Google Scholar 

  • Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., et al. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences, 105, 8790–8794.

    Article  CAS  Google Scholar 

  • Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., et al. (2001). KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development, 15, 79–89.

    Article  CAS  Google Scholar 

  • Fischer, R., Byerlee, D., & Edmeades, G. O. (2009). Can technology deliver on the yield challenge to 2050. In Expert meeting on How to feed the World in, 2009 (pp. 1–48).

  • Goday, A., Jensen, A. B., Culiáñez-Macià, F. A., Mar Albà, M., Figueras, M., Serratosa, J., et al. (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. The Plant Cell, 6, 351–360.

    Article  CAS  Google Scholar 

  • Gomez S. M., Boopathi, N. M., Satheesh Kumar, S., Ramasubramanian, T., Chengsong, Z., Jeyaprakash, P., et al. (2010). Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiologiae Plantarum, 32, 355–364.

    Article  Google Scholar 

  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., et al. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2973–2989.

    Article  Google Scholar 

  • Gowda, V. R., Henry, A., Yamauchi, A., Shashidhar, H., & Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 122, 1–13.

    Article  Google Scholar 

  • Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M. J., Chory, J., et al. (2011). Brassinosteroid perception in the epidermis controls root meristem size. Development, 138, 839–848.

    Article  CAS  Google Scholar 

  • Hirota, A., Kato, T., Fukaki, H., Aida, M., & Tasaka, M. (2007). The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. The Plant Cell, 19, 2156–2168.

    Article  CAS  Google Scholar 

  • Huang, Y. C., Huang, W. L., Hong, C. Y., Lur, H. S., & Chang, M. C. (2012). Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis thaliana drought tolerance. Rice, 5, 33.

    Article  Google Scholar 

  • Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. The FEBS Journal, 276, 3148–3162.

    Article  CAS  Google Scholar 

  • Johnson, K. L., Jones, B. J., Bacic, A., & Schultz, C. J. (2003). The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology, 133, 1911–1925.

    Article  CAS  Google Scholar 

  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., et al. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7, 1029.

    Article  Google Scholar 

  • Kitomi, Y., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., & Uga, Y. (2015). QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice, 8, 16.

    Article  Google Scholar 

  • Koag, M. C., Fenton, R. D., Wilkens, S., & Close, T. J. (2003). The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiology, 131, 309–316.

    Article  CAS  Google Scholar 

  • Kumar, A., Dixit, S., Ram, T., Yadaw, R., Mishra, K., & Mandal, N. (2014). Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65, 6265–6278.

    Article  CAS  Google Scholar 

  • Lau, S., De Smet, I., Kolb, M., Meinhardt, H., & Jürgens, G. (2011). Auxin triggers a genetic switch. Nature Cell Biology, 13, 611.

    Article  CAS  Google Scholar 

  • Lee, S. K., Jeon, J. S., Börnke, F., Voll, L., Cho, J. I., Goh, C. H., et al. (2008). Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant, Cell and Environment, 31, 1851–1863.

    Article  CAS  Google Scholar 

  • Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., et al. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2013.00272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenka, S. K., Katiyar, A., Chinnusamy, V., & Bansal, K. C. (2011). Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnology Journal, 9, 315–327.

    Article  CAS  Google Scholar 

  • Levitt, J. (1972). Response of plants to environmental stresses water, radiation, salt and other stresses. New York, NY: Academic Press.

    Google Scholar 

  • Li, S., Bashline, L., Lei, L., & Gu, Y. (2014). Cellulose synthesis and its regulation. The Arabidopsis Book, 12, e0169.

    Article  Google Scholar 

  • Liu, Y., Xiong, Y., & Bassham, D. C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 5, 954–963.

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-\Delta\Delta C_{\rm T}}\) method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  Google Scholar 

  • Moumeni, A., & Kikuchi, S. (2016). Analyses of drought-tolerance mechanism of rice based on the transcriptome and gene ontology data. Drought stress tolerance in plants (Vol. 2, pp. 415–432). Berlin: Springer.

    Chapter  Google Scholar 

  • Munasinghe, M., & Price, A. H. (2016). Genetic and root phenotype diversity in Sri Lankan rice landraces may be related to drought resistance. Rice, 9, 24.

    Article  Google Scholar 

  • Mundree, S. G., Baker, B., Mowla, S., Peters, S., Marais, S., Vander Willigen, C., et al. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1, 28–38.

    Article  CAS  Google Scholar 

  • Nagahatenna, D. S., Langridge, P., & Whitford, R. (2015). Tetrapyrrole-based drought stress signalling. Plant Biotechnology Journal, 13, 447–459.

    Article  CAS  Google Scholar 

  • Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149, 88–95.

    Article  CAS  Google Scholar 

  • Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5, 170.

    Article  Google Scholar 

  • Nawaz, G., & Kang, H. (2017). Chloroplast-or mitochondria-targeted DEAD-Box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Frontiers in Plant Science, 8, 871.

    Article  Google Scholar 

  • Ober, E. S., & Sharp, R. E. (2007). Regulation of root growth responses to water deficit. Advances in molecular breeding toward drought and salt tolerant crops (pp. 33–53). Berlin: Springer.

    Chapter  Google Scholar 

  • Ogawa, A., & Yamauchi, A. (2006). Root osmotic adjustment under osmotic stress in maize seedlings. Transient change of growth and water relations in roots in response to osmotic stress. Plant Production Science, 9, 27–38.

    Article  Google Scholar 

  • Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., & Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell, 19, 118–130.

    Article  CAS  Google Scholar 

  • O’Toole, J. C., & Chang, T. (1979). Drought resistance in cereals—Rice: A case study. In H. Mussell & R. C. Staples (Eds.), Stress physiology of crop plants (pp. 374–405). New York, NY: Wiley.

    Google Scholar 

  • Patel, S., & Dinesh-Kumar, S. P. (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy, 4, 20–27.

    Article  CAS  Google Scholar 

  • Pilet, P.-E., & Saugy, M. (1987). Effect on root growth of endogenous and applied IAA and ABA A critical reexamination. Plant Physiology, 83, 33–38.

    Article  CAS  Google Scholar 

  • Prince, S. J., Beena, R., Gomez, S. M., Senthivel, S., & Babu, R. C. (2015). Mapping consistent rice (Oryza sativa L.) yield QTLs under drought stress in target rainfed environments. Rice, 8, 25.

    Article  Google Scholar 

  • Rabara, R. C., Tripathi, P., & Rushton, P. J. (2014). The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS: A Journal of Integrative Biology, 18, 601–614.

    Article  CAS  Google Scholar 

  • Rahman, H., Jagadeeshselvam, N., Valarmathi, R., Sachin, B., Sasikala, R., Senthil, N., et al. (2014). Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Molecular Biology, 85, 485–503.

    Article  CAS  Google Scholar 

  • Rich, S. M., & Watt, M. (2013). Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 64, 1193–1208.

    Article  CAS  Google Scholar 

  • Sadasivam, S., Babu, R., Raveendran, M., & Raja, J. (2000). Genetic variation in seed germination, root traits and drought recovery in rice Indian. Journal of Plant Physiology, 5, 73–78.

    Google Scholar 

  • Salunkhe, A. S., Poornima, R., Prince, K. S., Kanagaraj, P., Sheeba, J. A., Amudha, K., et al. (2011). Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Molecular Biotechnology, 49, 90–95.

    Article  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., et al. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal, 31, 279–292.

    Article  CAS  Google Scholar 

  • Sharp, R. E., Hsiao, T. C., & Silk, W. K. (1990). Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 93, 1337.

    Article  CAS  Google Scholar 

  • Singh, D., & Laxmi, A. (2015). Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Frontiers in Plant Science, 6, 895.

    PubMed  PubMed Central  Google Scholar 

  • Smith, S., & De Smet, I. (2012). Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1595), 1441–1452.

    Article  CAS  Google Scholar 

  • Song, Y., You, J., & Xiong, L. (2009). Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Molecular Biology, 70, 297–309.

    Article  CAS  Google Scholar 

  • Taiz, L. (1984). Plant cell expansion: Regulation of cell wall mechanical properties. Annual Review of Plant Physiology, 35, 585–657.

    Article  CAS  Google Scholar 

  • Tanaka, R., & Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58, 321–346.

    Article  CAS  Google Scholar 

  • Tenhaken, R. (2014). Cell wall remodeling under abiotic stress. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2014.00771.

    Article  PubMed  Google Scholar 

  • Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004). Mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37, 914–939.

    Article  CAS  Google Scholar 

  • Topp, G. C. (1993). Soil water content. In M. R. Carter (Ed.), Soil sampling and methods of analysis. London: Lewis Publishers.

    Google Scholar 

  • Tuteja N (2007) Mechansims of high salinity tolerance in plants. Methods Enzymol 428, 419–438

    Article  CAS  Google Scholar 

  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45, 1097–1102.

    Article  CAS  Google Scholar 

  • Venuprasad, R., Dalid, C. O., Del Valle, M., Zhao, D., Espiritu, M., Sta Cruz, M. T., et al. (2009). Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics, 120, 177–190.

    Article  Google Scholar 

  • Vikram, P., Mallikarjuna Swamy, B. P., Dixit, S., Singh, R., Singh, B. P., Miro, B., et al. (2015). Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific Reports. https://doi.org/10.1038/srep14799.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A. M., Zeng, L., et al. (2005). Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiology, 139, 822–835.

    Article  CAS  Google Scholar 

  • Wang, Y., Deng, D., Bian, Y., Lv, Y., & Xie, Q. (2010). Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Molecular Biology Reports, 37, 3991–4001.

    Article  CAS  Google Scholar 

  • Wang, H., Siopongco, J., Wade, L. J., & Yamauchi, A. (2009). Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 65, 338–344.

    Article  Google Scholar 

  • Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67.

    PubMed  PubMed Central  Google Scholar 

  • Wilkinson, S., Kudoyarova, G. R., Veselov, D. S., Arkhipova, T. N., & Davies, W. J. (2012). Plant hormone interactions: Innovative targets for crop breeding and management. Journal of Experimental Botany, 63, 3499–3509.

    Article  CAS  Google Scholar 

  • Xiong, L., & Zhu, J.-K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiology, 133, 29–36.

    Article  CAS  Google Scholar 

  • You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092.

    Article  Google Scholar 

  • Zhu, G., Ye, N., & Zhang, J. (2009). Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant and Cell Physiology, 50, 644–651.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of Department of Biotechnology, Government of India, New Delhi (BT/PR5095/AGR/2/847/2012) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveendran Muthurajan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthurajan, R., Rahman, H., Manoharan, M. et al. Drought responsive transcriptome profiling in roots of contrasting rice genotypes. Ind J Plant Physiol. 23, 393–407 (2018). https://doi.org/10.1007/s40502-018-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0381-9

Keywords

Navigation