Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 24–39 | Cite as

Identification of proteins in response to terminal drought stress in sorghum (Sorghum bicolor (L.) Moench) using two-dimensional gel-electrophoresis and MALDI-TOF-TOF MS/MS

  • Adugna Abdi Woldesemayat
  • David M. Modise
  • Bongani K. Ndimba
Original Article
  • 44 Downloads

Abstract

Terminal drought responses in sorghum (Sorghum bicolor (L.) Moench) leaf tissue (Btx642) was investigated under post-flowering drought stress. Phenotypic data measurements and changes in protein abundance were compared between observed mean values of traits and protein spots of the well-watered (control) and drought stressed plants. Protein separation of the replicated tissue was conducted using two-dimensional gel electrophoresis. Gels were stained using Coomassie Brilliant Blue and then scanned by Molecular Imager PharosFX Plus System (BIO-RAD). Sixteen spots among 86 produced were selected based on intensity or abundance and resolution for protein identification using Matrix Assisted Laser Desorption/Ionisation—time of flight mass spectrometry (MALDI-TOF-TOF MS/MS). Nine proteins with 6 functional categories and 3 subcellular localization were identified based on MASCOT search engine of which 77.7% were significantly expressed. This study, show how plants induce intracellular signals to activate drought-response and defense pathways by up-regulating key proteins and also bypass stress condition by down regulating the rate limiting enzymes. The key metabolic pathways involved in the drought stress response were shown with 5 functional classes. The findings demonstrate novel functions of the proteins with central role in maintaining intact metabolic and photosynthetic pathways in sorghum under drought stress. Our work provides initial information as the basis for modern breeding to enhance drought tolerance and productivity in sorghum.

Keywords

Drought tolerance 2D-gel electrophoresis Leaf tissue MALDI-TOF-TOF MS/MS Protein identification Sorghum bicolor (L.) Moench 

Notes

Acknowledgements

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa and the National Agricultural Proteomics Research and Service Unit (NAPRSU), University of the Western Cape. The authors thank Professor Alan Christoffels of the South African National Bioinformatics Institute (SANBI), for logistic help and kind support. The research materials were obtained from ICRISAT, India. University of South Africa provided financial and logistic support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

40502_2018_357_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (PDF 79 kb)
40502_2018_357_MOESM2_ESM.pdf (291 kb)
Supplementary material 2 (PDF 290 kb)
40502_2018_357_MOESM3_ESM.pdf (219 kb)
Supplementary material 3 (PDF 219 kb)
40502_2018_357_MOESM4_ESM.pdf (168 kb)
Supplementary material 4 (PDF 167 kb)
40502_2018_357_MOESM5_ESM.pdf (286 kb)
Supplementary material 5 (PDF 285 kb)
40502_2018_357_MOESM6_ESM.pdf (92 kb)
Supplementary material 6 (PDF 92 kb)
40502_2018_357_MOESM7_ESM.pdf (135 kb)
Supplementary material 7 (PDF 135 kb)
40502_2018_357_MOESM8_ESM.pdf (72 kb)
Supplementary material 8 (PDF 71 kb)
40502_2018_357_MOESM9_ESM.pdf (72 kb)
Supplementary material 9 (PDF 72 kb)
40502_2018_357_MOESM10_ESM.pdf (78 kb)
Supplementary material 10 (PDF 77 kb)
40502_2018_357_MOESM11_ESM.pdf (89 kb)
Supplementary material 11 (PDF 89 kb)
40502_2018_357_MOESM12_ESM.jpeg (153 kb)
Supplementary material 12 (JPEG 152 kb)
40502_2018_357_MOESM13_ESM.jpeg (148 kb)
Supplementary material 13 (JPEG 148 kb)
40502_2018_357_MOESM14_ESM.jpeg (174 kb)
Supplementary material 14 (JPEG 174 kb)
40502_2018_357_MOESM15_ESM.jpeg (147 kb)
Supplementary material 15 (JPEG 146 kb)

References

  1. Abdi, A., & Asfaw, Z. (2005). In situ (on-farm) conservation dynamics and the patterns of uses of sorghum (Sorghum bicolor (L.) Moench) landraces in north Shewa and south Wollo, Central Highlands of Ethiopia. Ethiopian Journal of Biological Sciences, 4(2), 161–184.Google Scholar
  2. Ahmad, Y., Arya, A., Gangwar, A., Paul, S., & Bhargava, K. (2014). Proteomics in diagnosis: Past, present and future. Journal of Proteomics & Genomics, 1(1), 103.Google Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefPubMedGoogle Scholar
  4. Atkin, O. K., & Macherel, D. (2009). The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 103(4), 581–597.CrossRefPubMedGoogle Scholar
  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.CrossRefPubMedGoogle Scholar
  6. Chen, R.-D., Yu, L.-X., Greer, A. F., Cheriti, H., & Tabaeizadeh, Z. (1994). Isolation of an osmotic stress-and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Molecular and General Genetics MGG, 245(2), 195–202.CrossRefPubMedGoogle Scholar
  7. Choudhary, J. S., Blackstock, W. P., Creasy, D. M., & Cottrell, J. S. (2001). Matching peptide mass spectra to EST and genomic DNA databases. Trends in Biotechnology, 19, 17–22.CrossRefGoogle Scholar
  8. Colussi, C., Albertini, M. C., Coppola, S., Rovidati, S., Galli, F., & Ghibelli, L. (2000). H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. The FASEB Journal, 14(14), 2266–2276.  https://doi.org/10.1096/fj.00-0074com.CrossRefPubMedGoogle Scholar
  9. Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.CrossRefPubMedGoogle Scholar
  10. Consortium, U., et al. (2013). Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Research, 41(D1), D43–D47.CrossRefGoogle Scholar
  11. Cooper, S. J., Leonard, G. A., McSweeney, S. M., Thompson, A. W., Naismith, J. H., Qamar, S., et al. (1996). The crystal structure of a class II fructose-1, 6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure, 4(11), 1303–1315.CrossRefPubMedGoogle Scholar
  12. Entelis, N., Brandina, I., Kamenski, P., Krasheninnikov, I. A., Martin, R. P., & Tarassov, I. (2006). A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes & Development, 20(12), 1609–1620.CrossRefGoogle Scholar
  13. Garrels, J. I. (1989). The QUEST system for quantitative analysis of two-dimensional gels. Journal of Biological Chemistry, 264(9), 5269–5282.PubMedGoogle Scholar
  14. Ghannoum, O. (2009). C4 photosynthesis and water stress. Annals of Botany, 103(4), 635–644.CrossRefPubMedGoogle Scholar
  15. Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., et al. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany.  https://doi.org/10.1093/jxb/erq167.Google Scholar
  16. Grabski, A. C., & Novagen, R. R. B. (2001). Preparation of protein samples for SDS-polyacrylamide gel electrophoresis: Procedures and tips. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.378.613. Accessed 5 March 2014.
  17. Haake, V., Zrenner, R., Sonnewald, U., & Stitt, M. (1998). A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. The Plant Journal, 14(2), 147–157.CrossRefPubMedGoogle Scholar
  18. Harris, K., Subudhi, P. K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., et al. (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58(2), 327–338.CrossRefPubMedGoogle Scholar
  19. Hejl, A. A., Einhellig, F. A., & Rasmussen, J. A. (1993). Effects of juglone on growth, photosynthesis, and respiration. Journal of Chemical Ecology, 19(3), 559–568.CrossRefPubMedGoogle Scholar
  20. Henze, K., Badr, A., Wettern, M., Cerff, R., & Martin, W. (1995). A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proceedings of the National Academy of Sciences, 92(20), 9122–9126.CrossRefGoogle Scholar
  21. Heymans, M., & Singh, A. K. (2003). Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics, 19(suppl 1), i138–i146.CrossRefPubMedGoogle Scholar
  22. Jedmowski, C., Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Brüggemann, W. (2014). Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. International Journal of Proteomics, 2014(395905), 1–10.  https://doi.org/10.1155/2014/395905.CrossRefGoogle Scholar
  23. Jiang, S.-S., Liang, X.-N., Li, X., Wang, S.-L., Lv, D.-W., Ma, C.-Y., et al. (2012). Wheat drought-responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. International Journal of Molecular Sciences, 13(12), 16065–16083.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jordan, D. R., Hunt, C. H., Cruickshank, A. W., Borrell, A. K., & Henzell, R. G. (2012). The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Science, 52(3), 1153–1161.CrossRefGoogle Scholar
  25. Kebede, H., Subudhi, P. K., Rosenow, D. T., & Nguyen, H. T. (2001). Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics, 103(2–3), 266–276.CrossRefGoogle Scholar
  26. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007). The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50(2), 347–363.CrossRefPubMedGoogle Scholar
  27. Kim, Y.-O., Kim, J. S., & Kang, H. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. The Plant Journal, 42(6), 890–900.CrossRefPubMedGoogle Scholar
  28. Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: Specificity and cross-talk. Trends in Plant Science, 6(6), 262–267.CrossRefPubMedGoogle Scholar
  29. Koenig, T., Menze, B. H., Kirchner, M., Monigatti, F., Parker, K. C., Patterson, T., et al. (2008). Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. Journal of Proteome Research, 7(9), 3708–3717.CrossRefPubMedGoogle Scholar
  30. Kromer, S. (1995). Respiration during photosynthesis. Annual Review of Plant Biology, 46(1), 45–70.CrossRefGoogle Scholar
  31. Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., & Zhu, J.-K. (2002). LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. The EMBO Journal, 21(11), 2692–2702.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li, Y.-H., Ou-Yang, F.-Y., Yang, C.-H., & Li, S.-Y. (2015). The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187, 189–197.  https://doi.org/10.1016/j.biortech.2015.03.090.CrossRefPubMedGoogle Scholar
  33. Lim, H., Eng, J., Yates, J. R., III, Tollaksen, S. L., Giometti, C. S., Holden, J. F., et al. (2003). Identification of 2D-gel proteins: A comparison of MALDI/TOF peptide mass mapping to μ LC-ESI tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(9), 957–970.  https://doi.org/10.1016/S1044-0305(03)00144-2.CrossRefPubMedGoogle Scholar
  34. Liu, P., Yin, L., Deng, X., Wang, S., Tanaka, K., & Zhang, S. (2014). Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. Journal of Experimental Botany, 65(17), 4747–4756.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mace, E. S., & Jordan, D. R. (2011). Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theoretical and Applied Genetics, 123(1), 169–191.CrossRefPubMedGoogle Scholar
  36. Mackintosh, J. A., Veal, D. A., & Karuso, P. (2005). Fluoroprofile, a fluorescence-based assay for rapid and sensitive quantitation of proteins in solution. Proteomics, 5(18), 4673–4677.  https://doi.org/10.1002/pmic.200500095.CrossRefPubMedGoogle Scholar
  37. Mahalakshmi, V., & Bidinger, F. R. (2002). Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Science, 42(3), 965–974.CrossRefGoogle Scholar
  38. Manners, J. M., & Casu, R. E. (2011). Transcriptome analysis and functional genomics of sugarcane. Tropical Plant Biology, 4(1), 9–21.CrossRefGoogle Scholar
  39. Mitchell, P. (1973). Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. In Membrane structure and mechanisms of biological energy transduction (pp. 5–24). Springer. http://link.springer.com/chapter/10.1007/978-1-4684-2016-6_2. Accessed 20 June 2014.
  40. Ndimba, B. K., Chivasa, S., Simon, W. J., & Slabas, A. R. (2005). Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 5(16), 4185–4196.CrossRefPubMedGoogle Scholar
  41. Ndimba, B. K., Thomas, L. A., & Ngara, R. (2010). Sorghum 2-dimensional proteome profiles and analysis of HSP70 expression under salinity stress. Kasetsart Journal (Nat Sci), 44, 768–775.Google Scholar
  42. Ngara, R., Ndimba, R., Borch-Jensen, J., Jensen, O. N., & Ndimba, B. (2012). Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. Journal of Proteomics, 75(13), 4139–4150.CrossRefPubMedGoogle Scholar
  43. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1), 29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3(6), 327–332.CrossRefPubMedGoogle Scholar
  45. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551–556.CrossRefPubMedGoogle Scholar
  46. Pihlasalo, S., Kulmala, A., Rozwandowicz-Jansen, A., Hänninen, P., & Härmä, H. (2012). Sensitive Luminometric method for protein quantification in bacterial cell lysate based on particle adsorption and dissociation of chelated europium. Analytical Chemistry, 84(3), 1386–1393.CrossRefPubMedGoogle Scholar
  47. Rabilloud, T. (2014). How to use 2D gel electrophoresis in plant proteomics. In J. V. Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant proteomics (pp. 43–50). Humana Press. http://dx.doi.org/10.1007/978-1-62703-631-3_4. Accessed 5 January 2017.
  48. Ratnavathi, C. V., Komala, V. V., Vijaykumar, B. S., Das, I. K., & Patil, J. V. (2012). Fumonisin B1 contamination in kharik grain sorghum in India. Quality Assurance and Safety of Crops & Foods, 4(3), 146.CrossRefGoogle Scholar
  49. Reddy, N. R. R., Ragimasalawada, M., Sabbavarapu, M. M., Nadoor, S., & Patil, J. V. (2014). Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics, 15(1), 909.CrossRefGoogle Scholar
  50. Sáez, D. E., & Slebe, J. C. (2000). Subcellular localization of aldolase B. Journal of Cellular Biochemistry, 78(1), 62–72.CrossRefPubMedGoogle Scholar
  51. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161(2), 341–370.CrossRefGoogle Scholar
  52. Saxena, A., Tripathi, B. P., Kumar, M., & Shahi, V. K. (2009). Membrane-based techniques for the separation and purification of proteins: An overview. Advances in Colloid and Interface Science, 145(1–2), 1–22.  https://doi.org/10.1016/j.cis.2008.07.004.CrossRefPubMedGoogle Scholar
  53. Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., et al. (2011). Database resources of the national center for biotechnology information. Nucleic Acids Research, 39(suppl 1), D38–D51.CrossRefPubMedGoogle Scholar
  54. Schwender, J., Goffman, F., Ohlrogge, J. B., & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018), 779–782.CrossRefPubMedGoogle Scholar
  55. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.CrossRefPubMedGoogle Scholar
  56. Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S., & Karube, I. (2000). Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant and Cell Physiology, 41(11), 1279–1285.CrossRefPubMedGoogle Scholar
  57. Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., et al. (2013). Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environmental Research Letters, 8(1), 014040.CrossRefGoogle Scholar
  58. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., & Dubinsky, Z. (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68(1), 15–28.CrossRefGoogle Scholar
  59. Thiede, B., Koehler, C. J., Strozynski, M., Treumann, A., Stein, R., Zimny-Arndt, U., et al. (2013). High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture (SILAC), two-dimensional gel electrophoresis (2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Molecular and Cellular Proteomics, 12(2), 529–538.CrossRefPubMedGoogle Scholar
  60. Walulu, R. S., Rosenow, D. T., Wester, D. B., & Nguyen, H. T. (1994). Inheritance of the stay green trait in sorghum. Crop Science, 34(4), 970–972.CrossRefGoogle Scholar
  61. Wang, X., Gowik, U., Tang, H., Bowers, J. E., Westhoff, P., & Paterson, A. H. (2009). Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology, 10(6), R68.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang, X., Li, X., & Li, Y. (2007). A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnology Letters, 29(10), 1599–1603.CrossRefPubMedGoogle Scholar
  63. Woldesemayat, A. A., Van Heusden, P., Ndimba, B. K., & Christoffels, A. (2017). An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench). BMC Genetics, 18(1), 119.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Adugna Abdi Woldesemayat
    • 1
    • 2
    • 6
  • David M. Modise
    • 3
  • Bongani K. Ndimba
    • 4
    • 5
  1. 1.South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics InstituteUniversity of the Western CapeBellevilleSouth Africa
  2. 2.Department of Life and Consumer Sciences, College of Agriculture and Environmental SciencesUniversity of South AfricaFlorida, JohannesburgSouth Africa
  3. 3.Department of Agriculture and Animal Health, College of Agriculture and Environmental SciencesUniversity of South AfricaFlorida, JohannesburgSouth Africa
  4. 4.Department of BiotechnologyUniversity of the Western CapeCape TownSouth Africa
  5. 5.Agricultural Research Council, Infruitech-NietvoorbijStellenboschSouth Africa
  6. 6.FloridaSouth Africa

Personalised recommendations